scholarly journals Strongly Anchoring Polysulfides by Hierarchical Fe3O4/C3N4 Nanostructures for Advanced Lithium–Sulfur Batteries

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Soochan Kim ◽  
Simindokht Shirvani-Arani ◽  
Sungsik Choi ◽  
Misuk Cho ◽  
Youngkwan Lee

AbstractLi–S batteries have attracted considerable interest as next-generation energy storage devices owing to high energy density and the natural abundance of sulfur. However, the practical applications of Li–S batteries are hampered by the shuttle effect of soluble lithium polysulfides (LPS), which results in low cycle stability. Herein, a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3N4 (t-C3N4) embedded with Fe3O4 nanospheres. t-C3N4 exhibits high surface area and strong anchoring of LPS, and the Fe3O4/t-C3N4 accelerates the anchoring of LPS and improves the electronic pathways. The combination of these materials leads to remarkable battery performance with 400% improvement in a specific capacity and a low capacity decay per cycle of 0.02% at 2 C over 1000 cycles, and stable cycling at 6.4 mg cm−2 for high-sulfur-loading cathode.

RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20173-20183
Author(s):  
Yasai Wang ◽  
Guilin Feng ◽  
Yang Wang ◽  
Zhenguo Wu ◽  
Yanxiao Chen ◽  
...  

Lithium–sulfur batteries are considered to be promising energy storage devices owing to their high energy density, relatively low price and abundant resources.


2021 ◽  
Vol 22 (9) ◽  
pp. 4498
Author(s):  
Md. Motiar Rahman ◽  
Mst Gulshan Ara ◽  
Mohammad Abdul Alim ◽  
Md. Sahab Uddin ◽  
Agnieszka Najda ◽  
...  

Mesoporous carbon is a promising material having multiple applications. It can act as a catalytic support and can be used in energy storage devices. Moreover, mesoporous carbon controls body’s oral drug delivery system and adsorb poisonous metal from water and various other molecules from an aqueous solution. The accuracy and improved activity of the carbon materials depend on some parameters. The recent breakthrough in the synthesis of mesoporous carbon, with high surface area, large pore-volume, and good thermostability, improves its activity manifold in performing functions. Considering the promising application of mesoporous carbon, it should be broadly illustrated in the literature. This review summarizes the potential application of mesoporous carbon in many scientific disciplines. Moreover, the outlook for further improvement of mesoporous carbon has been demonstrated in detail. Hopefully, it would act as a reference guidebook for researchers about the putative application of mesoporous carbon in multidimensional fields.


Author(s):  
Maru Dessie Walle ◽  
You-Nian Liu

AbstractThe lithium–sulfur (Li–S) batteries are promising because of the high energy density, low cost, and natural abundance of sulfur material. Li–S batteries have suffered from severe capacity fading and poor cyclability, resulting in low sulfur utilization. Herein, S-DHCS/CNTs are synthesized by integration of a double-hollow carbon sphere (DHCS) with carbon nanotubes (CNTs), and the addition of sulfur in DHCS by melt impregnations. The proposed S-DHCS/CNTs can effectively confine sulfur and physically suppress the diffusion of polysulfides within the double-hollow structures. CNTs act as a conductive agent. S-DHCS/CNTs maintain the volume variations and accommodate high sulfur content 73 wt%. The designed S-DHCS/CNTs electrode with high sulfur loading (3.3 mg cm−2) and high areal capacity (5.6 mAh mg cm−2) shows a high initial specific capacity of 1709 mAh g−1 and maintains a reversible capacity of 730 mAh g−1 after 48 cycles at 0.2 C with high coulombic efficiency (100%). This work offers a fascinating strategy to design carbon-based material for high-performance lithium–sulfur batteries.


2021 ◽  
Author(s):  
Zhikang Wang ◽  
Guiqiang Cao ◽  
Da Bi ◽  
Tian-Xiong Tan ◽  
Qingxue Lai ◽  
...  

Lithium-Sulfur batteries have been regarded as the most promising electrochemical energy storage device in consideration of their satisfactory high specific capacity and high energy density. However, the inferior conversion efficiency...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuaki Kisu ◽  
Sangryun Kim ◽  
Takara Shinohara ◽  
Kun Zhao ◽  
Andreas Züttel ◽  
...  

AbstractHigh-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices. However, they have seen limited progress due to challenges associated with developing electrolytes showing reductive/oxidative stabilities and high ionic conductivities. This paper describes a calcium monocarborane cluster salt in a mixed solvent as a Ca-battery electrolyte with high anodic stability (up to 4 V vs. Ca2+/Ca), high ionic conductivity (4 mS cm−1), and high Coulombic efficiency for Ca plating/stripping at room temperature. The developed electrolyte is a promising candidate for use in room-temperature rechargeable Ca batteries.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Guo-Qun Zhang ◽  
Bo Li ◽  
Mao-Cheng Liu ◽  
Shang-Ke Yuan ◽  
Leng-Yuan Niu

Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1) and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles). The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.


2021 ◽  
Vol 44 (1) ◽  
pp. 129-140
Author(s):  
Agha Kashif ◽  
Sumaira Aftab ◽  
Muhammad Javaid ◽  
Hafiz Muhammad Awais

Abstract Topological index (TI) is a numerical invariant that helps to understand the natural relationship of the physicochemical properties of a compound in its primary structure. George Polya introduced the idea of counting polynomials in chemical graph theory and Winer made the use of TI in chemical compounds working on the paraffin's boiling point. The literature of the topological indices and counting polynomials of different graphs has grown extremely since that time. Metal-organic network (MON) is a group of different chemical compounds that consist of metal ions and organic ligands to represent unique morphology, excellent chemical stability, large pore volume, and very high surface area. Working on structures, characteristics, and synthesis of various MONs show the importance of these networks with useful applications, such as sensing of different gases, assessment of chemicals, environmental hazard, heterogeneous catalysis, gas and energy storage devices of excellent material, conducting solids, super-capacitors and catalysis for the purification, and separation of different gases. The above-mentioned properties and physical stability of these MONs become a most discussed topic nowadays. In this paper, we calculate the M-polynomials and various TIs based on these polynomials for two different MONs. A comparison among the aforesaid topological indices is also included to represent the better one.


Nanoscale ◽  
2021 ◽  
Author(s):  
Fanglei Zeng ◽  
Fang Wang ◽  
Ning Li ◽  
Ke Meng Song ◽  
Shi-Ye Chang ◽  
...  

Li-S battery is considered as one of the most promising battery system because of its large theoretical capacity and high energy density. However, the “shuttle effect” of soluble polysulfides and...


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhichang Xiao ◽  
Junwei Han ◽  
Haiyong He ◽  
Xinghao Zhang ◽  
Jing Xiao ◽  
...  

Lithium-ion capacitors (LICs) have attracted much attention considering their efficient combination of high energy density and high-power density. However, to meet the increasing requirements of energy storage devices and the...


2021 ◽  
Author(s):  
Yucai Li ◽  
Yan Zhao ◽  
Shiwei Song ◽  
Jian wang

Abstract Core-shell structured NiCo2S4@NiMoO4 is considered to be one of the most promising electrode materials for supercapacitors due to its high specific capacitance and excellent cycle performance. In this work, we report NiCo2S4@NiMoO4 nanosheets on Ni foam by two-step fabricated method. The as-obtained product has high capacitance of 1102.5 F g− 1 at 1 A g− 1. The as-assembled supercapacitor has also a high energy density of 37.6 W h kg− 1 and superior cycle performance with 85% capacitance retention. The electrode materials reported here might exhibits potential applications in future energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document