scholarly journals 165. Emergence of Extensively Drug-Resistant Salmonella enterica Serotype Typhi Infections—United States, 2008–2020

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S99-S100
Author(s):  
Felicita Medalla ◽  
Louise Francois Watkins ◽  
Michael Hughes ◽  
Meseret Birhane ◽  
Layne Dorough ◽  
...  

Abstract Background Typhoid fever, caused by Salmonella Typhi, is fatal in 12%–30% of patients not treated with appropriate antibiotics. In 2016, a large outbreak of extensively drug-resistant (XDR) Typhi infections began in Pakistan with cases reported globally, including the United States. In 2021, the Centers for Disease Control and Prevention (CDC) issued a health advisory on XDR infections among U.S. residents without international travel. We describe resistance of Typhi infections diagnosed in the United States to help guide treatment decisions. Methods Typhoid fever is a nationally notifiable disease. Health departments report cases to CDC through the National Typhoid and Paratyphoid Fever Surveillance system. Isolates are submitted to the National Antimicrobial Resistance Monitoring System for antimicrobial susceptibility testing (AST) using broth microdilution. AST results are categorized by Clinical and Laboratory Standards Institute criteria. We defined XDR as resistant to ceftriaxone, ampicillin, chloramphenicol, and co-trimoxazole, and nonsusceptible to ciprofloxacin. Results During 2008–2019, of 4,637 Typhi isolates, 52 (1%) were ceftriaxone resistant (axo-R); 71% were ciprofloxacin nonsusceptible, 1 azithromycin resistant (azm-R), and none meropenem resistant. XDR was first detected in 2018, in 2% of 474 isolates and increased to 7% of 535 in 2019. Of the 52 axo-R isolates, 46 were XDR, of which 45 were from travelers to Pakistan, and one from a non-traveler; 6 were not XDR, of which 4 were linked to travel to Iraq. In preliminary 2020 reports, 23 isolates were XDR; 14 were from travelers to Pakistan, 8 from non-travelers, and 1 from someone with unknown travel status. Among those with XDR infection, median age was 11 years (range 1–62), 54% were female, and 62% were from 6 states. Conclusion Ceftriaxone-resistant Typhi infections, mostly XDR, are increasing. Clinicians should ask patients with suspected Typhi infections about travel and adjust treatment based on susceptibility results. Carbapenem, azithromycin, or both may be considered for empiric therapy of typhoid fever among travelers to Pakistan or Iraq and in uncommon instances when persons report no international travel. Ceftriaxone is an empiric therapy option for travelers to countries other than Pakistan and Iraq. Disclosures All Authors: No reported disclosures

2019 ◽  
Vol 59 (1) ◽  
pp. 31-33 ◽  
Author(s):  
Christine E. Petrin ◽  
Russell W. Steele ◽  
Elizabeth A. Margolis ◽  
Justin M. Rabon ◽  
Holly Martin ◽  
...  

Enteric fever (formerly typhoid fever) is a bacterial illness caused by fecal-oral transmission of Salmonella typhi or paratyphi. In early 2018, an outbreak of Salmonella typhi resistant to third-generation cephalosporins, ampicillin, ciprofloxacin, trimethroprim-sulfamethoxazole, and chloramphenicol was reported in Pakistan. This strain, termed “extensively resistant typhi,” has infected more than 5000 patients in endemic areas of South Asia, as well as travelers to and from these areas, including 5 cases in the United States. We present the case of one such child who developed extensively resistant enteric fever during a recent visit to Pakistan and required broader antimicrobial treatment than typically required. Clinicians should be aware that incoming cases of enteric fever may be nonsusceptible to commonly recommended antibiotics and that extensively resistant typhi requires treatment with carbapenems such as meropenem or azithromycin.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S365-S365
Author(s):  
Felicita Medalla ◽  
Louise Francois Watkins ◽  
Kevin Chatham-Stephens ◽  
Jared Reynolds ◽  
Amelia Bicknese ◽  
...  

Abstract Background Salmonella Typhi (Typhi) causes typhoid fever, accounting for an estimated 5,700 illnesses and 623 hospitalizations per year in the United States. Most infections are acquired during travel to regions outside the United States where typhoid fever is prevalent and antimicrobial resistance is a problem. Fluoroquinolones (e.g., ciprofloxacin) are considered the treatment of choice for susceptible Typhi infections due to their superior ability to concentrate intracellularly and in bile, however, nonsusceptibility has been associated with treatment failure or delayed response. Azithromycin and ceftriaxone are treatment options. We describe antimicrobial susceptibility among Typhi isolates in the United States and the implications for management. Methods The National Antimicrobial Resistance Monitoring System at CDC conducts susceptibility testing on all Typhi isolates submitted by public health laboratories. We used broth microdilution to determine minimum inhibitory concentrations (MICs) to agents representing 9 antimicrobial classes and categorized isolates according to criteria from the Clinical and Laboratory Standards Institute. We defined ciprofloxacin nonsusceptibility as MIC ≥0.12 μg/mL, ciprofloxacin resistance as MIC ≥1, azithromycin resistance as MIC ≥32, and ceftriaxone resistance as MIC ≥4. Results From 2003–2015, isolates were tested from 4,550 patients; 2,760 (61%) were ciprofloxacin nonsusceptible, 4% were ciprofloxacin resistant. One isolate was azithromycin resistant and none were ceftriaxone resistant. Ciprofloxacin nonsusceptibility increased from 39% in 2003 to 66% in 2015; resistance increased from 0.3% to 8%. Median age of patients was 23 years (range 1–99 years), 53% were male, most were from the Northeast (33%) or the West (29%), and 74% had an isolate from blood. Conclusion Two thirds of Typhi isolates exhibited ciprofloxacin nonsusceptibility, which has increased over the last decade, and full resistance is increasing. Clinicians should be aware of high rates of fluoroquinolone nonsusceptibility when selecting empiric therapy and should tailor antimicrobial treatment to susceptibility results when feasible. Azithromycin and ceftriaxone remain important treatment options. Disclosures All authors: No reported disclosures.


Author(s):  
Michael J Hughes ◽  
Meseret G Birhane ◽  
Layne Dorough ◽  
Jared L Reynolds ◽  
Hayat Caidi ◽  
...  

Abstract Cases of extensively drug-resistant (XDR) typhoid fever have been reported in the United States among patients who did not travel internationally. Clinicians should consider if and where the patient travelled when selecting empiric treatment for typhoid fever. XDR typhoid fever should be treated with a carbapenem, azithromycin, or both.


Author(s):  
Jade L. L. Teng ◽  
Elaine Chan ◽  
Asher C. H. Dai ◽  
Gillian Ng ◽  
Tsz Tuen Li ◽  
...  

Both typhoidal and non-typhoidal salmonellae are included in the top 15 drug-resistant threats described by the Center for Disease Control and Prevention of the United States. There is an urgent need to look for alternative antibiotics for the treatment of Salmonella infections. We examined the in vitro susceptibilities of ceftolozane/tazobactam and six other antibiotics on typhoidal and non-typhoidal salmonellae, including isolates that are extended-spectrum β-lactamase (ESBL)-positive, using the broth microdilution test. Of the 313 (52 typhoidal and 261 non-typhoidal) Salmonella isolates tested, 98.7% were susceptible to ceftolozane/tazobactam. Based on the overall MIC 50/90 values, Salmonella isolates were more susceptible to ceftolozane/tazobactam (0.25/0.5 mg/L) compared to all other comparator agents: ampicillin (≥64/≥64 mg/L), levofloxacin (0.25/1 mg/L), azithromycin (4/16 mg/L), ceftriaxone (≤0.25/4 mg/L), chloramphenicol (8/≥64 mg/L) and trimethoprim/sulfamethoxazole (1/≥8 mg/L). When comparing the activity of the antimicrobial agents against non-typhoidal Salmonella isolates according to their serogroup, ceftolozane/tazobactam had the highest activity (100%) against Salmonella serogroups D, G, I and Q isolates, whereas the lowest activity (85.7%) was observed against serogroup E isolates. All the 10 ESBL-producing Salmonella (all non-typhoidal) isolates, of which 8 were CTX-M-55-producers and 2 were CTX-M-65-producers, were sensitive to ceftolozane/tazobactam albeit with a higher MIC 50/90 value (1/2 mg/L) than non-ESBL-producers (0.25/0.5 mg/L). In summary, our data indicate that ceftolozane/tazobactam is active against most strains of both typhoidal and non-typhoidal salmonellae and also active against ESBL-producing salmonellae.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Mariana Castanheira ◽  
Helio S. Sader ◽  
Rodrigo E. Mendes ◽  
Ronald N. Jones

ABSTRACT Plazomicin was active against 97.0% of 8,783 Enterobacterales isolates collected in the United States (2016 and 2017), and only 6 isolates carried 16S rRNA methyltransferases conferring resistance to virtually all aminoglycosides. Plazomicin (89.2% to 95.9% susceptible) displayed greater activity than amikacin (72.5% to 78.6%), gentamicin (30.4% to 45.9%), and tobramycin (7.8% to 22.4%) against carbapenem-resistant and extensively drug-resistant isolates. The discrepancies among the susceptibility rates for these agents was greater when applying breakpoints generated using the same stringent contemporary methods applied to determine plazomicin breakpoints.


2019 ◽  
Vol 6 (7) ◽  
Author(s):  
Ayesha Khan ◽  
Truc T Tran ◽  
Rafael Rios ◽  
Blake Hanson ◽  
William C Shropshire ◽  
...  

Abstract Background Treatment of serious infections due to multidrug-resistant (MDR) Pseudomonas aeruginosa remains a challenge, despite the introduction of novel therapeutics. In this study, we report 2 extensively drug-resistant clinical isolates of sequence type (ST) 309 P aeruginosa resistant to all β-lactams, including the novel combinations ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam. Methods Isolates were sequenced using both short-read (Illumina) and long-read technology to identify resistance determinants, polymorphisms (compared with P aeruginosa PAO1), and reconstruct a phylogenetic tree. A pair of β-lactamases, Guiana extended spectrum β-lactamase (GES)-19 and GES-26, were cloned and expressed in a laboratory strain of Escherichia coli to examine their relative impact on resistance. Using cell lysates from E coli expressing the GES genes individually and in tandem, we determined relative rates of hydrolysis for nitrocefin and ceftazidime. Results Two ST309 P aeruginosa clinical isolates were found to harbor the extended spectrum β-lactamases GES-19 and GES-26 clustered in tandem on a chromosomal class 1 integron. The presence of both enzymes in E coli was associated with significantly elevated minimum inhibitory concentrations to aztreonam, cefepime, meropenem, ceftazidime/avibactam, and ceftolozane/tazobactam, compared with those expressed individually. The combination of ceftazidime/avibactam plus aztreonam was active in vitro and used to achieve cure in one patient. Phylogenetic analysis revealed ST309 P aeruginosa are closely related to MDR strains from Mexico also carrying tandem GES. Conclusions The presence of tandem GES-19 and GES-26 is associated with resistance to all β-lactams, including ceftolozane/tazobactam. Phylogenetic analysis suggests that ST309 P aeruginosa may be an emerging threat in the United States.


1973 ◽  
Vol 71 (3) ◽  
pp. 509-513 ◽  
Author(s):  
F. A. Waldvogel ◽  
J. S. Pitton

SUMMARYA case of typhoid fever caused bySalmonella typhioccurred in Geneva. The patient was probably infected in Mexico City. The strain isolated from this patient corresponds with the description of the MexicanS. typhistrain, since it is a degraded Vi-strain resistant to chloramphenicol, streptomycin, sulphonamides and tetracyclines. It carried anfi−transferable R factor with a CSSuT resistance pattern. It can be accepted that this case forms part of the Mexican outbreak of chloramphenicol-resistant typhoid fever which has already been observed in visitors to Mexico from England and the United States.


Sign in / Sign up

Export Citation Format

Share Document