Air Pollution

Author(s):  
Horacio Riojas-Rodríguez ◽  
Isabelle Romieu ◽  
Mauricio Hernández-Ávila

This chapter describes the adverse effects of both outdoor air pollution and indoor air pollution. Various ambient air pollutants are described as well as their adverse health effects, including acute and chronic respiratory disorders, cardiac disorders, cerebrovascular disease, and cancer. A section deals with National Ambient Air Quality Standards of the Environmental Protection Agency for particulate matter, sulfur dioxide, ozone, oxides of nitrogen, and carbon monoxide. Another section describes exposure assessment. The chapter also describes various measures to control hazardous air pollutants and prevent disorders related to air pollution. In addition, a section features indoor air pollution, including pollution due to burning of biomass for cooking and heat.

2013 ◽  
Vol 664 ◽  
pp. 207-210 ◽  
Author(s):  
Ying Han ◽  
Li Fen Yi

There is a great improvement in modern people’s working and living environment. As the new building materials and technology appear, it brings some problems to indoor environment. more and more people pay attention to their living conditions especially the quality of indoor environment. Every year ,there are 110,000 people who die from indoor air pollution every year in China, hence indoor air pollution is affecting human health. In this paper, through analysis of the sources, adverse health effects of several common indoor air pollutants, air pollutants are major contributing factors to chronic diseases and mortality. It should be treated urgently with the people’s standard of living improvement.


Author(s):  
Hoang Anh Le ◽  
Le Thuy Linh

The most typical air pollutants including PM10, CO, SO2, NOx are monitored at different sites indoor (basement, shopping malls) and outdoor (ambient air) of several complex buildings which are used for different purposes of resident, office, and shopping malls in Hanoi. The results show that the indoor air pollution concentrations tend to be higher than the corresponding pollutants of the ambient air. The results show the highest concentrations are in RC building for the same category of floor comparing to the other two buildings. Pollutant concentrations at basement for parking is the highest with the values of PM10, SO2, NOx, CO of 67.1 ± 21.2 µg/m3, 224.8 ± 34.9 µg/m3, 287.3 ± 136.3 µg/m3, 22,372.5 ± 2,324.5 µg/m3, respectively. The high concentration of indoor air pollutants are harmful for human health, especially for those who have longer exposure time.        


2021 ◽  
Author(s):  
Hamid Omidvarborna ◽  
Prashant Kumar

<p>The majority of people spend most of their time indoors, where they are exposed to indoor air pollutants. Indoor air pollution is ranked among the top ten largest global burden of a disease risk factor as well as the top five environmental public health risks, which could result in mortality and morbidity worldwide. The spent time in indoor environments has been recently elevated due to coronavirus disease 2019 (COVID-19) outbreak when the public are advised to stay in their place for longer hours per day to protect lives. This opens an opportunity to low-cost air pollution sensors in the real-time Spatio-temporal mapping of IAQ and monitors their concentration/exposure levels indoors. However, the optimum selection of low-cost sensors (LCSs) for certain indoor application is challenging due to diversity in the air pollution sensing device technologies. Making affordable sensing units composed of individual sensors capable of measuring indoor environmental parameters and pollutant concentration for indoor applications requires a diverse scientific and engineering knowledge, which is not yet established. The study aims to gather all these methodologies and technologies in one place, where it allows transforming typical homes into smart homes by specifically focusing on IAQ. This approach addresses the following questions: 1) which and what sensors are suitable for indoor networked application by considering their specifications and limitation, 2) where to deploy sensors to better capture Spatio-temporal mapping of indoor air pollutants, while the operation is optimum, 3) how to treat the collected data from the sensor network and make them ready for the subsequent analysis and 4) how to feed data to prediction models, and which models are best suited for indoors.</p>


2019 ◽  
Author(s):  
Khaled Fikry salama ◽  
Mubashir Zafar Zafar

Abstract Background: Indoor air pollution is important environmental health problem. Nanotechnology is one of the most important methods to reduce the air pollution. The aim of this study to determine the effectiveness of nanotechnology for removal of toxic air indoor pollution by using Saudi myrtle plants treated with titanium dioxide. Methods: Experiments were conducted in the two academic departments of labs at public sector universities. Aplying titanium dioxide-containing growth media to at least one of a Myrtus communis plant root, stem, and leaf. Growing the plant in the growth media, a gel growth media, or both; exposing the plant to contaminant-containing air Results: It is found that the levels of formaldehyde, Volatile organic compounds and other pollutants were significantly reduced the concentration from 10% to 98% in air. The duration of the intervention from 4 hours to 8 hours, Air containing the concentration of NO2 SO2, formaldehyde, TVOCs and CO reduced from range of 0.3 ppm- 0.4ppm to range of 0.1ppm -0.3 ppm after exposure of Myrtus plant to ambient air and duration of the exposure is 4 hours to 8 hours. Conclusion: Application of Tio2 in green plant specially Mytrus Communis is a novel approach for reduction of concentrations of harmful gaseous toxic and carcinogenic air pollutants in indoor environment.


Author(s):  
Suzanne E. Gilbey ◽  
Christopher M. Reid ◽  
Rachel R. Huxley ◽  
Mario J. Soares ◽  
Yun Zhao ◽  
...  

Background: A growing body of epidemiological and clinical evidence has implicated air pollution as an emerging risk factor for cardiometabolic disease. Whilst individuals spend up to two-thirds of daily time in their domestic residential environment, very few studies have been designed to objectively measure the sub-clinical markers of cardiometabolic risk with exposure to domestic indoor air pollutants. This cross-sectional study aims to investigate associations between the components of domestic indoor air quality and selected sub-clinical cardiometabolic risk factors in a cohort of healthy adults living in Perth, Western Australia. Methods: One hundred and eleven non-smoking adults (65% female) living in non-smoking households who were aged between 35–69 years were recruited for the project. Study subjects were invited to participate in all sections of the study, which included: Domestic indoor air monitoring along with the concurrent 24 h ambulatory monitoring of peripheral and central blood pressure and measures of central hemodynamic indices, standardized questionnaires on aspects relating to current health status and the domestic environment, a 24 h time-activity diary during the monitoring period, and clinic-based health assessment involving collection of blood and urine biomarkers for lipid and glucose profiles, as well as measures of renal function and an analysis of central pulse wave and pulse wave velocity. Results: This study provides a standardized approach to the study of sub-clinical cardiometabolic health effects that are related to the exposure to indoor air pollution. Conclusion: The findings of this study may provide direction for future research that will further contribute to our understanding of the relationship that exists between indoor air pollution and sub-clinical markers of cardiometabolic risk.


Author(s):  
Peter Franklin ◽  
Mark Tan ◽  
Naomi Hemy ◽  
Graham L. Hall

There is a growing body of research on the association between ambient air pollution and adverse birth outcomes. However, people in high income countries spend most of their time indoors. Pregnant women spend much of that time at home. The aim of this study was to investigate if indoor air pollutants were associated with poor birth outcomes. Pregnant women were recruited prior to 18 weeks gestation. They completed a housing questionnaire and household chemical use survey. Indoor pollutants, formaldehyde (HCHO), nitrogen dioxide (NO2) and volatile organic compounds (VOCs), were monitored in the women’s homes at 34 weeks gestation. Gestational age (GA), birth weight (BW) and length (BL) and head circumference (HC) were collected from birth records. The associations between measured pollutants, and pollution surrogates, were analysed using general linear models, controlling for maternal age, parity, maternal health, and season of birth. Only HCHO was associated with any of the birth outcomes. There was a 0.044 decrease in BW z-score (p = 0.033) and 0.05 decrease in HC z-score (p = 0.06) for each unit increase in HCHO. Although HCHO concentrations were very low, this finding is consistent with other studies of formaldehyde and poor birth outcomes.


2009 ◽  
Vol 19 (5) ◽  
pp. 357-368 ◽  
Author(s):  
Maggie L. Clark ◽  
Jennifer L. Peel ◽  
James B. Burch ◽  
Tracy L. Nelson ◽  
Matthew M. Robinson ◽  
...  

2020 ◽  
Author(s):  
Wenjun Meng ◽  
Qirui Zhong ◽  
Yilin Chen ◽  
Huizhong Shen ◽  
Shu Tao

<p>In addition to many recent actions taken to reduce emissions from energy production, industry, and transportation, a new campaign substituting residential solid fuels with electricity or natural gas has been launched in Beijing, Tianjin, and other 26 municipalities in northern China, aiming at solving severe ambient air pollution in the region. Quantitative analysis shows that the campaign can accelerate residential energy transition significantly, and if the planned target can be achieved, more than 60% of households are projected to remove solid fuels by 2021, compared with less than 20% without the campaign. Emissions of major air pollutants will be reduced substantially. With 60% substitution realized, emission of primary PM2.5 and contribution to ambient PM2.5 concentration in 2021 are projected to be 30% and 41% of those without the campaign. With 60% substitution, average indoor PM2.5 concentrations in living rooms in winter are projected to be reduced from 209 (190-230) μg/m3 to 125 (99-150) μg/m3. The population-weighted PM2.5 concentrations can be reduced from 140 μg/m3 in 2014 to 78 μg/m3 or 61 μg/m3 in 2021 given that 60% or 100% substitution can be accomplished. Although the original focus of the campaign was to address ambient air quality, exposure reduction comes more from improved indoor air quality because approximately 90% of daily exposure of the population is attributable to indoor air pollution. Women benefit more than men.</p>


Epidemiology ◽  
2006 ◽  
Vol 17 (Suppl) ◽  
pp. S351-S352
Author(s):  
M L. Clark ◽  
J L. Peel ◽  
T L. Nelson ◽  
J R. Stevens ◽  
S Conway ◽  
...  

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Kalpana Singh

Indoor air pollution is a major problem in our daily life. Efficient corrective methods are urgently needed to combat the problem of Indoor air quality Virus Bacteria pollen grains, smoke, humidity, chemical substances and gases released in anthropogenic activity have adverse health effects in humans . Indoor air is dominant exposure for humans, more than half of the body’s intake during life time is air inhaled in the home. This article is a study based on the effect of indoor air pollutant and their control measures


Sign in / Sign up

Export Citation Format

Share Document