Energy and air pollution benefits of household fuel policies in northern China

Author(s):  
Wenjun Meng ◽  
Qirui Zhong ◽  
Yilin Chen ◽  
Huizhong Shen ◽  
Shu Tao

<p>In addition to many recent actions taken to reduce emissions from energy production, industry, and transportation, a new campaign substituting residential solid fuels with electricity or natural gas has been launched in Beijing, Tianjin, and other 26 municipalities in northern China, aiming at solving severe ambient air pollution in the region. Quantitative analysis shows that the campaign can accelerate residential energy transition significantly, and if the planned target can be achieved, more than 60% of households are projected to remove solid fuels by 2021, compared with less than 20% without the campaign. Emissions of major air pollutants will be reduced substantially. With 60% substitution realized, emission of primary PM2.5 and contribution to ambient PM2.5 concentration in 2021 are projected to be 30% and 41% of those without the campaign. With 60% substitution, average indoor PM2.5 concentrations in living rooms in winter are projected to be reduced from 209 (190-230) μg/m3 to 125 (99-150) μg/m3. The population-weighted PM2.5 concentrations can be reduced from 140 μg/m3 in 2014 to 78 μg/m3 or 61 μg/m3 in 2021 given that 60% or 100% substitution can be accomplished. Although the original focus of the campaign was to address ambient air quality, exposure reduction comes more from improved indoor air quality because approximately 90% of daily exposure of the population is attributable to indoor air pollution. Women benefit more than men.</p>

2019 ◽  
Vol 116 (34) ◽  
pp. 16773-16780 ◽  
Author(s):  
Wenjun Meng ◽  
Qirui Zhong ◽  
Yilin Chen ◽  
Huizhong Shen ◽  
Xiao Yun ◽  
...  

In addition to many recent actions taken to reduce emissions from energy production, industry, and transportation, a new campaign substituting residential solid fuels with electricity or natural gas has been launched in Beijing, Tianjin, and 26 other municipalities in northern China, aiming at solving severe ambient air pollution in the region. Quantitative analysis shows that the campaign can accelerate residential energy transition significantly, and if the planned target can be achieved, more than 60% of households are projected to remove solid fuels by 2021, compared with fewer than 20% without the campaign. Emissions of major air pollutants will be reduced substantially. With 60% substitution realized, emission of primary PM2.5 and contribution to ambient PM2.5 concentration in 2021 are projected to be 30% and 41% of those without the campaign. With 60% substitution, average indoor PM2.5 concentrations in living rooms in winter are projected to be reduced from 209 (190 to 230) μg/m3 to 125 (99 to 150) μg/m3. The population-weighted PM2.5 concentrations can be reduced from 140 μg/m3 in 2014 to 78 μg/m3 or 61 μg/m3 in 2021 given that 60% or 100% substitution can be accomplished. Although the original focus of the campaign was to address ambient air quality, exposure reduction comes more from improved indoor air quality because ∼90% of daily exposure of the rural population is attributable to indoor air pollution. Women benefit more than men.


Author(s):  
Peter Franklin ◽  
Mark Tan ◽  
Naomi Hemy ◽  
Graham L. Hall

There is a growing body of research on the association between ambient air pollution and adverse birth outcomes. However, people in high income countries spend most of their time indoors. Pregnant women spend much of that time at home. The aim of this study was to investigate if indoor air pollutants were associated with poor birth outcomes. Pregnant women were recruited prior to 18 weeks gestation. They completed a housing questionnaire and household chemical use survey. Indoor pollutants, formaldehyde (HCHO), nitrogen dioxide (NO2) and volatile organic compounds (VOCs), were monitored in the women’s homes at 34 weeks gestation. Gestational age (GA), birth weight (BW) and length (BL) and head circumference (HC) were collected from birth records. The associations between measured pollutants, and pollution surrogates, were analysed using general linear models, controlling for maternal age, parity, maternal health, and season of birth. Only HCHO was associated with any of the birth outcomes. There was a 0.044 decrease in BW z-score (p = 0.033) and 0.05 decrease in HC z-score (p = 0.06) for each unit increase in HCHO. Although HCHO concentrations were very low, this finding is consistent with other studies of formaldehyde and poor birth outcomes.


2020 ◽  
Author(s):  
Suming Xu ◽  
Chunqing Sun ◽  
Xingyu Bi ◽  
Dan Feng ◽  
Lei Zhang ◽  
...  

Abstract BackgroundGlobally, air pollution has a significant impact on human health. However, the effects of air pollution on pregnancy outcomes in patients undergoing in vitro fertilization (IVF) have not been fully understood. In this study, we analyzed the effects of air pollution on IVF pregnancy outcomes in Taiyuan, which is a heavy polluted city in northern China.Methods516 patients who underwent first fresh IVF cycle were enrolled in the retrospective study from January 1, 2015 to May 31, 2020. We collected medical record data from the electronic medical record system and daily average air pollution data from air quality monitoring station. Logistic regression was used to analyze the relationship between six atmospheric pollutants (PM2.5, PM10, O3, NO2, SO2, CO) and air quality index (AQI) and IVF pregnancy outcomes (biochemical pregnancy and clinical pregnancy) in different exposure periods. ResultsThe results indicated that exposure to NO2 was negatively associated with the odds of biochemical pregnancy and clinical pregnancy, whereas exposure to O3 presented positive association. Furthermore, we also found that AQI was negatively associated with IVF pregnancy outcomes. ConclusionsOur findings suggested that exposure to ambient air pollution during any period may have an impact on IVF pregnancy outcomes, and poor air quality is more likely to reduce clinical pregnancy rates.


2018 ◽  
Vol 1 (2) ◽  
pp. 60
Author(s):  
Anggrika Riyanti ◽  
Peppy Herawati ◽  
Nyimas Hazana Pajriani

Transportation sector has a very big influence in air pollution. Increase the number of vehicles will caused higher air pollution, such as NO2. The increase in ambient air pollution is feared to have an impact on indoor air pollution. This study purposed is to determine the relationship between  NO2 concentration in ambient to indoor air.  This study used kuantitatif methods with purposive sampling for one month in Simpang Pulai Jambi City.  The relationship between NO2 concentration of ambient air and indoor air was analyzed using simple pearson correlation. The result showed that there was no significant relationship between NO2 concentration in ambient to indoor air with correlation value (r) is 0,437.  The highest NO2 concentration found on the third week in ambient 109,139 µg/m3and indoor air 70,133 µg/m3.  From analysis in one month showed that NO2 concentration in Simpang Kawat Jambi City still meet the air quality standard (150 μg / m3) in Government Regulation Number 41 Year 1999 about Air Pollution Control.


Author(s):  
Rekha Sharma

The ambient air quality in Indian cities has degraded to hazardous levels over the last two decades. People are exposed to extreme health risks due to increasing particulate matter, hazardous airborne agents in indoor spaces Outdoor air quality is affecting indoor air quality too.(1) Indoor air pollution is the degradation of indoor air quality by harmful chemicals and other materials; it can be up to 10 times worse than outdoor air pollution.  Over a million people in India die every year because of indoor air pollution, among highest in the world,(2). Indoor air pollution can be traced to prehistoric times when humans first moved to temperate climates and it became necessary to construct shelters and use fire inside them for cooking, warmth and light. (3) Approximately half the world’s population and up to 90% of rural households in developing countries still rely on unprocessed biomass fuels in the form of wood, dung and crop residues (4). Even today, about 43 percent of rural households and 31 percent of all Indian households use kerosene, for lighting purposes. Its impact on health and environment can be threatening.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Agus Dwi Susanto ◽  
Wira Winardi ◽  
Moulid Hidayat ◽  
Aditya Wirawan

AbstractIndoor air pollution marked with decreased air quality below the set standard. The quality of indoor air is determined by ambient air quality as well as by a harmful substance resulting from the household activity. Indoor air pollution may cause several problems such as sick building syndrome, chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and is responsible for nearly two million death in developing countries. One of the interesting research topics to overcome the indoor air pollution problem is the application of indoor plants. Although there are no established criteria to specify the best indoor plant, several studies have revealed the capability of a particular indoor plant to remove the harmful substances. This paper summarizes important information about indoor air pollution and provides the evidence-based insight of indoor plant usefulness as an alternative way for indoor air remediation.


Author(s):  
Hoang Anh Le ◽  
Le Thuy Linh

The most typical air pollutants including PM10, CO, SO2, NOx are monitored at different sites indoor (basement, shopping malls) and outdoor (ambient air) of several complex buildings which are used for different purposes of resident, office, and shopping malls in Hanoi. The results show that the indoor air pollution concentrations tend to be higher than the corresponding pollutants of the ambient air. The results show the highest concentrations are in RC building for the same category of floor comparing to the other two buildings. Pollutant concentrations at basement for parking is the highest with the values of PM10, SO2, NOx, CO of 67.1 ± 21.2 µg/m3, 224.8 ± 34.9 µg/m3, 287.3 ± 136.3 µg/m3, 22,372.5 ± 2,324.5 µg/m3, respectively. The high concentration of indoor air pollutants are harmful for human health, especially for those who have longer exposure time.        


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 678
Author(s):  
Adeeba Al-Hurban ◽  
Sawsan Khader ◽  
Ahmad Alsaber ◽  
Jiazhu Pan

This study aimed to examine the trend of ambient air pollution (i.e., ozone (O3), nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), benzene (C6H6) and particulate matter with an aerodynamic diameter smaller than 10 microns (PM10), and non-methane hydrocarbons (NMHCs) at 10 monitoring stations located in the main residential and industrial areas in the State of Kuwait over 6 years (2012–2017). We found that the SO2 level in industrial areas (0.065 ppm) exceeded the allowable range of SO2 in residential areas (0.030 ppm). Air pollution variables were defined by the Environmental Public Authority of Kuwait (K-EPA). In this study, integrated statistical analysis was performed to compare an established air pollution database to Kuwait Ambient Air Quality Guidelines and to determine the association between pollutants and meteorological factors. All pollutants were positively correlated, with the exception of most pollutants and PM10 and O3. Meteorological factors, i.e., the ambient temperature, wind speed and humidity, were also significantly associated with the above pollutants. Spatial distribution mapping indicated that the PM10 level remained high during the southwest monsoon (the hot and dry season), while the CO level was high during the northeast monsoon (the wet season). The NO2 and O3 levels were high during the first intermonsoon season.


2014 ◽  
Vol 567 ◽  
pp. 3-7 ◽  
Author(s):  
Nurul Izma Mohammed ◽  
Nurfadhilah Othman ◽  
Khairul Bariyah Baharuddin

Complaints on poor air quality in an enclosed car park have been raised up among the public, which might cause serious health effects to the drivers, passengers, and labours who are working at the premises. Improper design of mechanical ventilation systems in a car park would result in a poor indoor environment. The exhaust emission of motor vehicle contains a variety of potentially harmful substances encompassing carbon monoxide, nitrogen oxides, sulphur dioxide, hydrocarbons, and fine particulates. In Kuala Lumpur, there is a great demand but a short supply of lands and building spaces. Thus, a large multi-storey underground car parks is a common solution for both, the government and developers. Although the health effects of the motor vehicle emissions and ambient air pollution are already known, but due to the nature of enclosed multi-storey car parks, these health risks are predicted to be intensified. Thus, it is crucial to investigate and evaluate the status of the air pollution in the enclosed car parks with emphasis on sulphur dioxide (SO2) and nitrogen dioxides (NO2). Samples were collected in one of the famous shopping malls in Kuala Lumpur using a GrayWolf Advanced Sense Direct Sense; Toxic Gas Test Meters from 8 am until 5 pm on weekdays and weekends. The results demonstrate that the concentrations of SO2 and NO2 on weekends is higher than weekdays. Besides, the concentrations for both weekdays and weekends have exceeded the standard limit set by the Malaysian Ambient Air Quality Guideline (MAAQG).


Sign in / Sign up

Export Citation Format

Share Document