Mean-Field Theories

Author(s):  
Eldred H. Chimowitz

The most widely used analytic models for representing thermodynamic behavior in supercritical ßuids are of the mean-Þeld variety. In addition to the practical interest in studying this topic, this class of models is also the conceptual starting point for any microscopic discourse on critical phenomena. In this chapter we take up the basic ideas behind this approach, studying different physical models, showing how their mean-Þeld approximations can be constructed as well as investigating their critical behavior. A useful conceptual model for understanding mean-Þeld ideas is the Ising model whose properties we consider in some detail, especially its mean-Þeld approximation. The Ising model has the advantage of belonging to the same critical universality class as so-called simple fluids, deÞned as ßuids with short-range intermolecular potentials. Most supercritical ßuid solvent systems of practical interest fall within this class; hence results developed using the Ising model have important implications for understanding the critical behavior of this entire universality class. While we discuss universality and related ideas in more detail in subsequent chapters, sufÞce it to say here that the Ising system belongs to arguably the most important critical universality class from a process engineering standpoint. In its simplest form, the Ising model considers N spins arranged on a lattice structure (of 1, 2, or 3 dimensions) with each spin able to adopt one of two (up or down) orientations in its lattice position. A speciÞc state of the system is determined by a given conÞguration of all the spins. The model can be made more complex by considering additional degrees of freedom to the spin orientations. For example, the Heisenberg model considers a 3-dimensional lattice with the spin orientation at each lattice site described by a 3-dimensional vector quantity. All that is required to facilitate the use of statistical mechanics with this model is the deÞnition of the Hamiltonian (the systemÕs energy function) associated with a particular lattice state υ. This Hamiltonian usually consists of spinÐspin interaction terms, as well as a term representing the presence of a magnetic Þeld, which serves to orient the spins in its direction.

2001 ◽  
Vol 15 (24n25) ◽  
pp. 3331-3335 ◽  
Author(s):  
R. ADAM STERN ◽  
GEORGE F. TUTHILL

A three-dimensional sixteen-vertex model on the diamond lattice describing proton ordering in KDP-type crystals is shown to exhibit both 1 st - and 2 nd -order phase transitions. The model's critical behavior was found, using analyses of series expansions and Monte Carlo simulations. When the transition is 2 nd -order, critical exponents belong to the universality class of the three-dimensional Ising model.


2000 ◽  
Vol 14 (14) ◽  
pp. 1473-1480
Author(s):  
ANGSULA GHOSH ◽  
T. A. S. HADDAD ◽  
S. R. SALINAS

We derive exact renormalization-group recursion relations for an Ising model, in the presence of external fields, with ferromagnetic nearest-neighbor interactions on Migdal–Kadanoff hierarchical lattices. We consider layered distributions of aperiodic exchange interactions, according to a class of two-letter substitutional sequences. For irrelevant geometric fluctuations, the recursion relations in parameter space display a nontrivial uniform fixed point of hyperbolic character that governs the universal critical behavior. For relevant fluctuations, in agreement with previous work, this fixed point becomes fully unstable, and there appears a two-cycle attractor associated with a new critical universality class.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Shing Yan Li ◽  
Yu-Cheng Qiu ◽  
S.-H. Henry Tye

Abstract Guided by the naturalness criterion for an exponentially small cosmological constant, we present a string theory motivated 4-dimensional $$ \mathcal{N} $$ N = 1 non-linear supergravity model (or its linear version with a nilpotent superfield) with spontaneous supersymmetry breaking. The model encompasses the minimal supersymmetric standard model, the racetrack Kähler uplift, and the KKLT anti-D3-branes, and use the nilpotent superfield to project out the undesirable interaction terms as well as the unwanted degrees of freedom to end up with the standard model (not the supersymmetric version) of strong and electroweak interactions.


2010 ◽  
Vol 19 (04) ◽  
pp. 548-557 ◽  
Author(s):  
D. VRETENAR ◽  
T. NIKŠIĆ ◽  
P. RING

A class of relativistic nuclear energy density functionals is explored, in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance correlations, as well as intermediate and long-range dynamics, are encoded in the nucleon-density dependence of the strength functionals of an effective interaction Lagrangian. The resulting phenomenological effective interaction, adjusted to experimental binding energies of a large set of axially deformed nuclei, together with a new separable pairing interaction adjusted to reproduce the pairing gap in nuclear matter calculated with the Gogny force, is applied in triaxial relativistic Hartree-Bogoliubov calculations of sequences of heavy nuclei: Th , U , Pu , Cm , Cf , Fm , and No .


2005 ◽  
Vol 127 (6) ◽  
pp. 934-945 ◽  
Author(s):  
Jason Potratz ◽  
Jingzhou Yang ◽  
Karim Abdel-Malek ◽  
Esteban Peña Pitarch ◽  
Nicole Grosland

This paper presents the design and prototyping of an inherently compliant lightweight hand mechanism. The hand mechanism itself has 15 degrees of freedom and five fingers. Although the degrees of freedom in each finger are coupled, reducing the number of independent degrees of freedom to 5, the 15 degrees of freedom of the hand could potentially be individually actuated. Each joint consists of a novel flexing mechanism that is based on the loading of a compression spring in the axial and transverse direction via a cable and conduit system. Currently, a bench top version of the prototype is being developed; the three joints of each finger are coupled together to simplify the control system. The current control scheme under investigation simulates a control scheme where myoelectric signals in the wrist flexor and extensor muscles are converted in to x and y coordinates on a control scheme chart. Static load-deformation analysis of finger segments is studied based on a 3-dimensional model without taking the stiffener into account, and the experiment validates the simulation.


Robotica ◽  
2011 ◽  
Vol 30 (1) ◽  
pp. 53-65 ◽  
Author(s):  
M. H. Korayem ◽  
V. Azimirad ◽  
H. Vatanjou ◽  
A. H. Korayem

SUMMARYThis paper presents a new method using hierarchical optimal control for path planning and calculating maximum allowable dynamic load (MADL) of wheeled mobile manipulator (WMM). This method is useful for high degrees of freedom WMMs. First, the overall system is decoupled to a set of subsystems, and then, hierarchical optimal control is applied on them. The presented algorithm is a two-level hierarchical algorithm. In the first level, interaction terms between subsystems are fixed, and in the second level, the optimization problem for subsystems is solved. The results of second level are used for calculating new estimations of interaction variables in the first level. For calculating MADL, the load on the end effector is increased until actuators get into saturation. Given a large-scale robot, we show how the presenting in distributed hierarchy in optimal control helps to find MADL fast. Also, it enables us to treat with complicated cost functions that are generated by obstacle avoidance terms. The effectiveness of this approach on simulation case studies for different types of WMMs as well as an experiment for a mobile manipulator called Scout is shown.


2006 ◽  
Vol 17 (09) ◽  
pp. 1285-1302 ◽  
Author(s):  
SANTANU SINHA ◽  
S. B. SANTRA

Directed spiral percolation (DSP) is a new percolation model with crossed external bias fields. Since percolation is a model of disorder, the effect of external bias fields on the properties of disordered systems can be studied numerically using DSP. In DSP, the bias fields are an in-plane directional field (E) and a field of rotational nature (B) applied perpendicular to the plane of the lattice. The critical properties of DSP clusters are studied here varying the direction of E field and intensities of both E and B fields in two-dimensions. The system shows interesting and unusual critical behavior at the percolation threshold. Not only the DSP model is found to belong in a new universality class compared to that of other percolation models but also the universality class remains invariant under the variation of E field direction. Varying the intensities of the E and B fields, a crossover from DSP to other percolation models has been studied. A phase diagram of the percolation models is obtained as a function of intensities of the bias fields E and B.


Sign in / Sign up

Export Citation Format

Share Document