Sustainability in Arid Grasslands: New Technology Applications for Management

Author(s):  
Thomas K. Budge ◽  
Arian Pregenzer

As biodiversity, ecosystem function, and ecosystem services become more closely linked with human well-being at all scales, the study of ecology takes on increasing social, economic, and political importance. However, when compared with other disciplines long linked with human well-being, such as medicine, chemistry, and physics, the technical tools and instruments of the ecologist have generally lagged behind those of the others. This disparity is beginning to be overcome with the increasing use of biotelemetric techniques, microtechnologies, satellite and airborne imagery, geographic information systems (GIS), and both regional and global data networks. We believe that the value and efficiency of ecosystem studies can advance significantly with more widespread use of existing technologies, and with the adaptation of technologies currently used in other disciplines to ecosystem studies. More importantly, the broader use of these technologies is critical for contributing to the preservation of biodiversity and the development of sustainable natural resource use by humans. The concept of human management of biodiversity and natural systems is a contentious one. However, we assert that as human population and resource consumption continue to increase, biodiversity and resource sustainability will only be preserved by increasing management efforts—if not of the biodiversity and resources themselves, then of human impacts on them. The technologies described in this chapter will help enable better management efforts. In this context, biodiversity refers not only to numbers of species (i.e., richness) in an arbitrarily defined area, but also to species abundances within that area. Sustainability refers to the maintenance of natural systems, biodiversity, and resources for the benefit of future generations. Arid-land grazing systems support human social systems and economies in regions all over the world, and can be expected to play increasingly critical roles as human populations increase. Further, grazing systems represent a nexus of natural and domesticated systems. In these systems, native biodiversity exists side by side with introduced species and populations, and in fact can benefit from them.

Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Extensive habitat loss and habitat conversion has occurred across all mediterranean-type climate (MTC) regions, driven by increasing human populations who have converted large tracts of land to production, transport, and residential use (land-use, land-cover change) while simultaneously introducing novel forms of disturbance to natural landscapes. Remaining habitat, often fragmented and in isolated or remote (mountainous) areas, is threatened and degraded by altered fire regimes, introduction of invasive species, nutrient enrichment, and climate change. The types and impacts of these threats vary across MTC regions, but overall these drivers of change show little signs of abatement and many have the potential to interact with MTC region natural systems in complex ways.


2020 ◽  
Vol 3 ◽  
Author(s):  
Christoph D. D. Rupprecht ◽  
Joost Vervoort ◽  
Chris Berthelsen ◽  
Astrid Mangnus ◽  
Natalie Osborne ◽  
...  

Non-technical summary The sustainability concept seeks to balance how present and future generations of humans meet their needs. But because nature is viewed only as a resource, sustainability fails to recognize that humans and other living beings depend on each other for their well-being. We therefore argue that true sustainability can only be achieved if the interdependent needs of all species of current and future generations are met, and propose calling this ‘multispecies sustainability’. We explore the concept through visualizations and scenarios, then consider how it might be applied through case studies involving bees and healthy green spaces.


2021 ◽  
Vol 118 (40) ◽  
pp. e2022216118 ◽  
Author(s):  
Kelsie E. Long ◽  
Larissa Schneider ◽  
Simon E. Connor ◽  
Niamh Shulmeister ◽  
Janet Finn ◽  
...  

The impacts of human-induced environmental change that characterize the Anthropocene are not felt equally across the globe. In the tropics, the potential for the sudden collapse of ecosystems in response to multiple interacting pressures has been of increasing concern in ecological and conservation research. The tropical ecosystems of Papua New Guinea are areas of diverse rainforest flora and fauna, inhabited by human populations that are equally diverse, both culturally and linguistically. These people and the ecosystems they rely on are being put under increasing pressure from mineral resource extraction, population growth, land clearing, invasive species, and novel pollutants. This study details the last ∼90 y of impacts on ecosystem dynamics in one of the most biologically diverse, yet poorly understood, tropical wetland ecosystems of the region. The lake is listed as a Ramsar wetland of international importance, yet, since initial European contact in the 1930s and the opening of mineral resource extraction facilities in the 1990s, there has been a dramatic increase in deforestation and an influx of people to the area. Using multiproxy paleoenvironmental records from lake sediments, we show how these anthropogenic impacts have transformed Lake Kutubu. The recent collapse of algal communities represents an ecological tipping point that is likely to have ongoing repercussions for this important wetland’s ecosystems. We argue that the incorporation of an adequate historical perspective into models for wetland management and conservation is critical in understanding how to mitigate the impacts of ecological catastrophes such as biodiversity loss.


2021 ◽  
Author(s):  
Vili Virkki ◽  
Elina Alanärä ◽  
Miina Porkka ◽  
Lauri Ahopelto ◽  
Tom Gleeson ◽  
...  

<p>The benefits of harnessing rivers into human use should not come with a disproportionate expense on the Earth system. Especially, freshwater ecosystems suffer greatly from direct and indirect human impacts, such as excessive water withdrawals and climate change, which are expected to only increase in the near future. Here, we aim for quantifying the extent and degree of considerable flow alterations that threaten the well-being of freshwater ecosystems, across the world.</p><p>At the global scale, the ecological status of river systems is often assessed using global hydrological models (GHMs) and hydrological environmental flow (EF) methods. These suffer from substantial uncertainties: 1) the GHMs parameterised with variable climate forcings may give highly dispersed discharge estimates and 2) individual hydrological EF methods capture ecosystem water needs poorly. We tackle these sources of uncertainty by introducing a novel methodology: environmental flow envelopes (EFEs). The EFE is an envelope of safe discharge variability between a lower and an upper bound, defined at the sub-basin scale in monthly time resolution. It is based on pre-industrial (1801-1860) discharge and a large ensemble of EF methods, GHMs, and climate forcings, using ISI-MIP2b data. Using the EFE, we can simultaneously assess the frequency and severity of ecosystem-threatening flow alterations.</p><p>Comparing post-industrial (1976-2005) discharge to the EFEs, discharge in 32.7% of the total 3860 sub-basins, covering 28.4% of the global landmass, violates the EFE during more than 10% of all months across four GHMs. These violations are considered as severe threats to freshwater ecosystems. The most impacted regions include areas with high anthropogenic pressure, such as the Middle East, India, Eastern Asia, and Middle America. The violations clearly concentrate on the EFE lower bound during low or intermediate flow seasons. Discharge in 61.4% of sub-basins violates the EFE during more than 10% of low flow season months, average violation being 47.5% below the safe limit denoted by EFE lower bound. Indications of significantly increased flows by violations of the EFE upper bound are fewer and further apart, as well as lower bound violations during high flow season.</p><p>Although fractional discharge allocations alone cannot fully capture the ecosystem water needs, this study is a step towards less uncertainty in global EF assessments. The introduced method provides a novel, globally robust way of estimating ecosystem water needs at the sub-basin scale. The results of this study underline the importance of the low flow season, during which EFE violations are the most prevalent. While only preliminary evidence of significantly increased flows emerges in relatively few areas, the EFE upper bound would benefit from further research. The EFE methodology can be used for exploring macro-regional areas where anthropogenic flow alteration threatens freshwater ecosystems the most. However, case-specific studies incorporating factors beyond quantitative flow only are required for practical implications.</p>


2020 ◽  
Vol 287 (1938) ◽  
pp. 20202202
Author(s):  
L. Mark Elbroch ◽  
Jake M. Ferguson ◽  
Howard Quigley ◽  
Derek Craighead ◽  
Daniel J. Thompson ◽  
...  

Top-down effects of apex predators are modulated by human impacts on community composition and species abundances. Consequently, research supporting top-down effects of apex predators occurs almost entirely within protected areas rather than the multi-use landscapes dominating modern ecosystems. Here, we developed an integrated population model to disentangle the concurrent contributions of a reintroduced apex predator, the grey wolf, human hunting and prey abundances on vital rates and abundance of a subordinate apex predator, the puma. Increasing wolf numbers had strong negative effects on puma fecundity, and subadult and adult survival. Puma survival was also influenced by density dependence. Overall, puma dynamics in our multi-use landscape were more strongly influenced by top-down forces exhibited by a reintroduced apex predator, than by human hunting or bottom-up forces (prey abundance) subsidized by humans. Quantitatively, the average annual impact of human hunting on equilibrium puma abundance was equivalent to the effects of 20 wolves. Historically, wolves may have limited pumas across North America and dictated puma scarcity in systems lacking sufficient refugia to mitigate the effects of competition.


Author(s):  
Casey M. Lindberg ◽  
Meredith A. Banasiak ◽  
Ryan M. Shindler ◽  
Esther M. Sternberg

Various fields of research have developed to better understand the health and behavioral effects of environmental characteristics such as air quality and the way our homes and neighborhoods are organized. A synergy of many previously disparate fields of research is underway, aided in part by recent advances in technology. Better sensors, including wearable physiological and environmental monitors, are enabling researchers to more readily study the interactions between environment characteristics and both mental and physical well-being. This new evidence-based research direction adds a much-needed layer of quantitative data to previous, largely qualitative, findings. Moreover, an increased understanding of the environment’s effects on humans can result in not just the alleviation of negative environmental characteristics but also the promotion of positive environmental characteristics. This chapter offers samples of environmental effects on human health and well-being in the following categories: environmental quality, natural systems, sensory environments, physical activity, safety, and social connectedness.


Author(s):  
Dorothy N. Gamble

This entry describes how the viability of long-term human social systems is inextricably linked to human behavior, environmental resources, the health of the biosphere, and human relationships with all living species. New ways of thinking and acting in our engagement with the biosphere are explored, with attention to new ways of measuring well-being to understand the global relationships among human settlements, food security, human population growth, and especially alternative economic efforts based on prosperity rather than on growth. The challenge of social work is to engage in socioecological activities that will prevent and slow additional damage to the biosphere while at the same time helping human populations to develop the cultural adaptation and resilience required to confront increasing weather disasters; displacement resulting from rising seas; drought conditions that severely affect food supplies; the loss of biodiversity, soils, forests, fisheries, and clean air; and other challenges to human social organizations.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 25
Author(s):  
Leitão ◽  
Ferreira ◽  
Ferreira

Land-use changes driven by human activities affect natural systems. Urbanization, forest monoculture and intensive agriculture are changing the functioning of many biotic and abiotic processes. This tends to decrease the ability of ecosystems to provide services, which leads to several problems particularly in cities. This study investigates the ability of urban areas with great population and environmental pressures, to supply ecosystem services. The study was carried out in Coimbra municipality, through the assessment of regulation, provisioning and cultural services. The quantification of ecosystem services was based on the evaluation performed by experts familiar with the study area, through questionnaires. A total of 31 questionnaires were completed. The experts ranked the potential supply of 30 ecosystem services for the 33 existent land-uses. based on a qualitative evaluation: “strong adverse potential”, “weak adverse potential”, “not relevant”, “low positive potential” and “strong positive potential”. The qualitative evaluation was converted into a quantitative classification (−2, −1, 0, 1, 2). The values were used to develop an ecosystem services quantification matrix and to map the information in the study area, using Geographic Information Systems (GIS). Despite the limited ecosystem services provided by urban areas, agricultural fields and especially green spaces are relevant for the provision of resources essential for human survival and well-being. The methodology used in this work is still useful for the quantification of ecosystem services in cities with characteristics associated with the Mediterranean climate. This type of studies are important to (i) anticipate problems originated from the loss of ecosystem services, (ii) identify good and bad practices of land use changes, (iii) the role of connectivity in maintaining biotic and abiotic processes, and (iv) develop practices that promote the sustainable development of societies.


2020 ◽  
Author(s):  
Martin Bohle ◽  
Martin Kowarsch

<p>Societies deploy technologies and infrastructures to interact with natural systems – for which geoscience expertise is key, including understanding changes due to unsustainable human practices. Despite its geoscience basis, however, human interaction with natural systems primarily is an economic, social and cultural endeavour about a desirable human niche. Depending on the ‘political spin’ of given actors – stewardship or engineering, for example – a geo-societal narrative is created when shaping the global human niche. These narratives explain how a given technology or infrastructure shall support production, consumption and societal well-being, as well as societal change and environmental alteration. Relatedly, as highlighted by the geoethics approach [*], geoscience research has ethical, social and cultural implications – for example, in terms of explanatory narratives. Led by climate research, contemporary Earth System Science illustrates that anthropogenic global change is as much a socio-cultural than a science theme <sup>1–3</sup>, which cannot be neatly disconnected.</p><p>Because the science and the socio-cultural spheres are so inevitably intermingled, a holistic approach to geoscience is required, e.g. when it comes to the future of humankind. Applying the ethical concept of responsibility for future generations (intergenerational justice), the geoscience community should engage with studying pathways to possible futures; that is: to embrace integrated assessments, which are holistic, involving personal and societal concerns, economic and environmental choices as well as philosophical conceptions of the world, human histories and human futures. While some geoscience domains, such as climate sciences, embarked on integrated assessments, others focus on past and present dynamics.  In particular, studies of hydrology, nutrient cycles, soils and natural hazards seem prone to engage with holistic, future-oriented integrated assessments.</p><p>Swift geo-processes such as the rise of the global sea-level are a ‘geological present’. However, human perception sees them shaping ‘a later future’ only – which sometimes blurs people’s sense-making of the present. Therefore, intergenerational justice calls upon geoscientists to engage with studies of possible future configurations of the Earth System; that is, geoscientist should study the networked geo-, bio-, techno- and societal-cultural systems holistically. It would be negligent grounding political governance on a body of expertise that lacks the integration of future-oriented geoscience knowledge with social science and humanities. More specifically, we argue to envisage a highly integrated exploration of alternative future policy pathways <sup>4</sup>. This approach envisages a deliberative learning process about policy alternatives in light of their practical (geoscience and socio-cultural) implications, engaging the potential of geoscience research for humankind.</p><p> [*] http://www.geoethics.org/definition</p><ol><li>Kowarsch, M., Flachsland, C., Garard, J., Jabbour, J. & Riousset, P. The treatment of divergent viewpoints in global environmental assessments. Environ. Sci. Policy <strong>77</strong>, 225–234 (2017).</li> <li>O’Neill, B. C. et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. <strong>42</strong>, 169–180 (2017).</li> <li>Schill, C. et al. A more dynamic understanding of human behaviour for the Anthropocene. Nat. Sustain. (2019). doi:10.1038/s41893-019-0419-7</li> <li>Edenhofer, O. & Kowarsch, M. Cartography of pathways: A new model for environmental policy assessments. Environ. Sci. Policy <strong>51</strong>, 56–64 (2015).</li> </ol>


2017 ◽  
Vol 372 (1735) ◽  
pp. 20160415 ◽  
Author(s):  
V. P. Weinberger ◽  
C. Quiñinao ◽  
P. A. Marquet

Biodiversity is sustained by and is essential to the services that ecosystems provide. Different species would use these services in different ways, or adaptive strategies, which are sustained in time by continuous innovations. Using this framework, we postulate a model for a biological species ( Homo sapiens ) in a finite world where innovations, aimed at increasing the flux of ecosystem services (a measure of habitat quality), increase with population size, and have positive effects on the generation of new innovations (positive feedback) as well as costs in terms of negatively affecting the provision of ecosystem services. We applied this model to human populations, where technological innovations are driven by cumulative cultural evolution. Our model shows that depending on the net impact of a technology on the provision of ecosystem services ( θ ), and the strength of technological feedback ( ξ ), different regimes can result. Among them, the human population can fill the entire planet while maximizing their well-being, but not exhaust ecosystem services. However, this outcome requires positive or green technologies that increase the provision of ecosystem services with few negative externalities or environmental costs, and that have a strong positive feedback in generating new technologies of the same kind. If the feedback is small, then the technological stock can collapse together with the human population. Scenarios where technological innovations generate net negative impacts may be associated with a limited technological stock as well as a limited human population at equilibrium and the potential for collapse. The only way to fill the planet with humans under this scenario of negative technologies is by reducing the technological stock to a minimum. Otherwise, the only feasible equilibrium is associated with population collapse. Our model points out that technological innovations per se may not help humans to grow and dominate the planet. Instead, different possibilities unfold for our future depending on their impact on the environment and on further innovation. This article is part of the themed issue ‘Process and pattern in innovations from cells to societies’.


Sign in / Sign up

Export Citation Format

Share Document