The Saccadic System

Author(s):  
Agnes Wong

Saccades are fast conjugate eye movements that move both eyes quickly in the same direction, so that the image of an object of interest is brought on the foveae. Saccades can be made not only toward visual targets, but also toward auditory and tactile stimuli, as well as toward memorized targets. Saccades can be generated reflexively, and they are responsible for resetting the eyes back to the mid-orbital position during vestibulo-ocular or optokinetic stimulation. Saccades need to be fast to get the eyes on the target as soon as possible. They also need to be fast because our eyes act like cameras with slow shutters—vision is so blurred during saccades that the eyes have to move quickly to minimize the time during which no clear image is captured on the foveae. Indeed, saccades are the fastest type of eye movements, and they are among the fastest movements that the body can make. Saccade speed is not under voluntary control but depends on the size of the movement, with larger saccades attaining higher peak velocities. It has been estimated that we make more than 100,000 saccades per day. The burst neuron circuits in the brainstem provide the necessary motor signals to the extraocular muscles for the generation of saccades. There is a division of labor between the pons and the midbrain, with the pons primarily involved in generating horizontal saccades and the midbrain primarily involved in generating vertical and torsional saccades. However, because eye movements are a component of cognitive and purposeful behaviors in higher mammals, the process of deciding when and where to make a saccade occurs in the cerebral cortex. Not only does the cortex exert control over saccades through direct projections to the burst neuron circuits, it also acts via the superior colliculus. The superior colliculus is located in the midbrain and consists of seven layers: three superficial layers and four intermediate/ deep layers. The three superficial layers receive direct inputs from both the retina and striate cortex, and they contain a retinotopic representation of the contralateral visual hemifield.

2008 ◽  
Vol 20 (11) ◽  
pp. 2025-2036 ◽  
Author(s):  
Stefan Van der Stigchel ◽  
Wieske van Zoest ◽  
Jan Theeuwes ◽  
Jason J. S. Barton

There is evidence that some visual information in blind regions may still be processed in patients with hemifield defects after cerebral lesions (“blindsight”). We tested the hypothesis that, in the absence of retinogeniculostriate processing, residual retinotectal processing may still be detected as modifications of saccades to seen targets by irrelevant distractors in the blind hemifield. Six patients were presented with distractors in the blind and intact portions of their visual field and participants were instructed to make eye movements to targets in the intact field. Eye movements were recorded to determine if blind-field distractors caused deviation in saccadic trajectories. No deviation was found in one patient with an optic chiasm lesion, which affect both retinotectal and retinogeniculostriate pathways. In five patients with lesions of the optic radiations or the striate cortex, the results were mixed, with two of the five patients showing significant deviations of saccadic trajectory away from the “blind” distractor. In a second experiment, two of the five patients were tested with the target and the distractor more closely aligned. Both patients showed a “global effect,” in that saccades deviated toward the distractor, but the effect was stronger in the patient who also showed significant trajectory deviation in the first experiment. Although our study confirms that distractor effects on saccadic trajectory can occur in patients with damage to the retinogeniculostriate visual pathway but preserved retinotectal projections, there remain questions regarding what additional factors are required for these effects to manifest themselves in a given patient.


1979 ◽  
Vol 57 (4) ◽  
pp. 359-368 ◽  
Author(s):  
V. C. Abrahams ◽  
G. Anstee

Unit response in the superior colliculus and underlying structures has been examined in the chloralose-anaesthetized cat following passive movement of an occluded eye. One group of units was sensitive to small saccadic movements, responded regardless of the initial position of the eye, and in most instances responded to movements in opposite directions. A second numerically smaller group also responded when the eye was moved at saccadic velocity but only when the eye passed a fixed point. Such units with fixed positional thresholds were found following movements in both nasal and temporal directions as well as to both upward and downward movement. Both types of unit response were found after transection of the optic nerve and were also recorded when individual extraocular muscles were subjected to controlled stretch, It is assumed that most unit activity seen after passive movement of the occluded eye is due to activity in extraocular muscle receptors. In the deep layers of the superior colliculus responses to small eye movements were found to be due to the activation of very low threshold receptors sensitive to vibration in the facial area.


2002 ◽  
Vol 87 (6) ◽  
pp. 2778-2789 ◽  
Author(s):  
Robijanto Soetedjo ◽  
Chris R. S. Kaneko ◽  
Albert F. Fuchs

Saccadic eye movements of different sizes and directions are represented in an orderly topographic map across the intermediate and deep layers of the superior colliculus (SC), where large saccades are encoded caudally and small saccades rostrally. Based on experiments in the cat, it has been suggested that saccades are initiated by a hill of activity at the caudal site appropriate for a particular saccade. As the saccade evolves and the remaining distance to the target, the motor error, decreases, the hill moves rostrally across successive SC sites responsible for saccades of increasingly smaller amplitudes. When the hill reaches the “fixation zone” in the rostral SC, the saccade is terminated. A moving hill of activity has also been posited for the monkey, in which it is supposed to be transported via so-called build-up neurons (BUNs), which have a prelude of activity that culminates in a burst for saccades. However, several studies using a variety of approaches have yet to provide conclusive evidence for or against a moving hill. The moving hill scenario predicts that during a large saccade the burst of a BUN in the rostral SC will be delayed until the motor error remaining in the evolving saccade is equal to the saccadic amplitude for which that BUN discharges best, i.e., its optimal amplitude. Therefore a plot of the burst lead preceding the “optimal” motor error against the time of occurrence of the optimal motor error should have a slope of zero. A slope of −1 indicates no moving hill. For our 20 BUNs, we used three measures of burst timing: the leads to the onset, peak, and center of the burst. The average slopes of these relations were −1.09, −0.79, and −0.58, respectively. For individual BUNs, the slopes of all three relations always differed significantly from zero. Although the peak and center leads fall between −1 and 0, a hill of activity moving rostrally at a rate indicated by either of these slopes would arrive at the fixation zone much too late to terminate the saccade at the appropriate time. Calculating our same three timing measures from averaged data leads us to the same conclusion. Thus our data do not support the moving hill model. However, we argue in the discussion that the constant lead of the burst onset relative to saccade onset (∼27 ms) suggests that the BUNs may help to trigger the saccade.


2000 ◽  
Vol 84 (2) ◽  
pp. 892-908 ◽  
Author(s):  
Michele A. Basso ◽  
Richard J. Krauzlis ◽  
Robert H. Wurtz

Neurons in the intermediate and deep layers of the rostral superior colliculus (SC) of monkeys are active during attentive fixation, small saccades, and smooth-pursuit eye movements. Alterations of SC activity have been shown to alter saccades and fixation, but similar manipulations have not been shown to influence smooth-pursuit eye movements. Therefore we both activated (electrical stimulation) and inactivated (reversible chemical injection) rostral SC neurons to establish a causal role for the activity of these neurons in smooth pursuit. First, we stimulated the rostral SC during pursuit initiation as well as pursuit maintenance. For pursuit initiation, stimulation of the rostral SC suppressed pursuit to ipsiversive moving targets primarily and had modest effects on contraversive pursuit. The effect of stimulation on pursuit varied with the location of the stimulation with the most rostral sites producing the most effective inhibition of ipsiversive pursuit. Stimulation was more effective on higher pursuit speeds than on lower and did not evoke smooth-pursuit eye movements during fixation. As with the effects on pursuit initiation, ipsiversive maintained pursuit was suppressed, whereas contraversive pursuit was less affected. The stimulation effect on smooth pursuit did not result from a generalized inhibition because the suppression of smooth pursuit was greater than the suppression of smooth eye movements evoked by head rotations (vestibular-ocular reflex). Nor was the stimulation effect due to the activation of superficial layer visual neurons rather than the intermediate layers of the SC because stimulation of the superficial layers produced effects opposite to those found with intermediate layer stimulation. Second, we inactivated the rostral SC with muscimol and found that contraversive pursuit initiation was reduced and ipsiversive pursuit was increased slightly, changes that were opposite to those resulting from stimulation. The results of both the stimulation and the muscimol injection experiments on pursuit are consistent with the effects of these activation and inactivation experiments on saccades, and the effects on pursuit are consistent with the hypothesis that the SC provides a position signal that is used by the smooth-pursuit eye-movement system.


1989 ◽  
Vol 62 (2) ◽  
pp. 510-525 ◽  
Author(s):  
J. G. McHaffie ◽  
C. Q. Kao ◽  
B. E. Stein

1. Extracellular recordings were made from single superior colliculus neurons in urethane-anesthetized rats in response to mechanical and/or thermal stimulation of the skin. In addition to those activated by low-threshold (LT) tactile stimuli, many neurons responded preferentially, or solely, to noxious stimuli. Two functionally defined subtypes of nociceptive neurons were distinguished: wide-dynamic-range (WDR) neurons, which responded optimally to noxious stimuli but also to innocuous stimuli; and nociceptive-specific (NS) neurons, which responded solely to frankly noxious stimuli. The thermal thresholds were 42-45 degrees C, and the stimulus-response relationships were positively accelerating power functions with exponents of 2.9 (WDR) and 3.1 (NS). 2. WDR neurons also responded to cooling of the skin to temperatures below 24 degrees C. Like noxious heat responses, cold responses were monotonically graded as the intensity of the cold stimulus was increased. Thus the temperature sensitivity of thermal-sensitive neurons in the superior colliculus appeared to be tuned to detect large deviations from ambient skin temperature in either direction once threshold is reached. 3. LT neurons were somatotopically organized, with the head and forelimbs rostral and the trunk and hindlimbs caudal. The limbs were generally represented further lateral in the structure, whereas more proximal body parts were more medial. Nevertheless, there was extensive overlap of body parts especially in areas of transition. Thus, a "block-to-block" or "area-to-area" rather than a "point-to-point" representation of the body surface was evident. 4. The nociceptive representation did not violate the general LT somatotopy but neither was it coextensive. Virtually all nociceptive neurons had trigeminal receptive fields and were thus heavily represented in the rostral superior colliculus, where the LT face representation was also located. No nociceptive neurons were present in the caudal one-third of the structure. A general dorsal-to-ventral segregation of somatosensory neurons also was noted, so that in a given electrode penetration, LT neurons usually were the most superficial, WDR neurons were just below these, and NS neurons were deepest of all. 5. The presence of overlapping LT and nociceptive trigeminal representations in the superior colliculus seems particularly adaptive in view of the fact that rodents use their vibrissae for exploring their environment and thus put rostral body parts at risk during such behaviors.(ABSTRACT TRUNCATED AT 400 WORDS)


1977 ◽  
Vol 40 (1) ◽  
pp. 74-94 ◽  
Author(s):  
C. W. Mohler ◽  
R. H. Wurtz

1. We studied the effect of lesions placed in striate cortex or superior colliculus on the detection of visual stimuli and the accuracy of saccadic eye movements. The monkeys (Macaca mulatta) first learned to respond to a 0.25 degrees spot of light flashed for 150-200 ms in one part of the visual field while they were fixating in order to determine if they could detect the light. The monkeys also learned in a different task to make a saccade to the spot of light when the fixation point went out, and the accuracy of the saccades was measured. 2. Following a unilateral partial ablation of the striate cortex in two monkeys they could not detect the spot of light in the resulting scotoma or saccade to it. The deficit was only relative; if we increased the brightness of the stimulus from the usual 11 cd/m2 to 1,700 cd/m2 against a background of 1 cd/m2 the monkeys were able to detect and to make a saccade to the spot of light. 3. Following about 1 mo of practice on the detection and saccade tasks, the monkeys recovered the ability to detect the spots of light and to make saccades to them without gross errors (saccades made beyond an area of +/-3 average standard deviations). Lowering the stimulus intensity reinstated both the detection and saccadic errors...


1976 ◽  
Vol 39 (6) ◽  
pp. 1352-1361 ◽  
Author(s):  
B. L. Finlay ◽  
P. H. Schiller ◽  
S. F. Volman

1. The receptive-field properties of corticotectal cells in the monkey's striate cortex were studied using stationary and moving stimuli. These cells were identified by antidromic activation from the superior colliculus. 2. Corticotectal cells form a relatively homogeneous group. They are found primarily in layers 5 and 6. These cells can usually be classified as CX-type cells but show broader orientation tuning, larger receptive fields, higher spontaneous activity, and greater binocular activation than CX-type cells do in general. A third of the corticotectal cells were direction selective. 3. These results suggest that the cortical input to the superior colliculus is not directly responsible for the receptive-field properties of collicular cells. We propose that this input has a gating function in contributing to the control of the downflow of excitation from the superficial to the deep layers of the colliculus.


2017 ◽  
Vol 117 (3) ◽  
pp. 1281-1292 ◽  
Author(s):  
Suraj Upadhyaya ◽  
Hui Meng ◽  
Vallabh E. Das

Disruption of binocular vision during the critical period for development leads to eye misalignment in humans and in monkey models. We have previously suggested that disruption within a vergence circuit could be the neural basis for strabismus. Electrical stimulation in the rostral superior colliculus (rSC) leads to vergence eye movements in normal monkeys. Therefore, the purpose of this study was to investigate the effect of SC stimulation on eye misalignment in strabismic monkeys. Electrical stimulation was delivered to 51 sites in the intermediate and deep layers of the SC (400 Hz, 0.5-s duration, 10–40 μA) in 3 adult optical prism-reared strabismic monkeys. Scleral search coils were used to measure movements of both eyes during a fixation task. Staircase saccades with horizontal and vertical components were elicited by stimulation as predicted from the SC topographic map. Electrical stimulation also resulted in significant changes in horizontal strabismus angle, i.e., a shift toward exotropia/esotropia depending on stimulation site. Electrically evoked saccade vector amplitude in the two eyes was not significantly different ( P > 0.05; paired t-test) but saccade direction differed. However, saccade disconjugacy accounted for only ~50% of the change in horizontal misalignment while disconjugate postsaccadic movements accounted for the other ~50% of the change in misalignment due to electrical stimulation. In summary, our data suggest that electrical stimulation of the SC of strabismic monkeys produces a change in horizontal eye alignment that is due to a combination of disconjugate saccadic eye movements and disconjugate postsaccadic movements. NEW & NOTEWORTHY Electrical stimulation of the superior colliculus in strabismic monkeys results in a change in eye misalignment. These data support the notion of developmental disruption of vergence circuits leading to maintenance of eye misalignment in strabismus.


2001 ◽  
Vol 86 (5) ◽  
pp. 2629-2633 ◽  
Author(s):  
Richard J. Krauzlis

The intermediate and deep layers of the monkey superior colliculus (SC) are known to be important for the generation of saccadic eye movements. Recent studies have also provided evidence that the rostral SC might be involved in the control of pursuit eye movements. However, because rostral SC neurons respond to visual stimuli used to guide pursuit, it is also possible that the pursuit-related activity is simply a visual response. To test this possibility, we recorded the activity of neurons in the rostral SC as monkeys smoothly pursued a target that was briefly extinguished. We found that almost all rostral SC neurons in our sample maintained their pursuit-related activity during a brief visual blink, which was similar to the maintained activity they also exhibited during blinks imposed during fixation. These results indicate that discharge of rostral SC neurons during pursuit is not simply a visual response, but includes extraretinal signals.


Sign in / Sign up

Export Citation Format

Share Document