DNA amplification and multiplexing

Author(s):  
Pierre Taberlet ◽  
Aurélie Bonin ◽  
Lucie Zinger ◽  
Eric Coissac

After a brief reminder of the principles underlying the polymerase chain reaction (PCR), Chapter 6 “DNA amplification and multiplexing” discusses the choice of a DNA polymerase for the PCR. In particular, it warns against the use of proofreading polymerases, that can lead to a substantial loss of PCR specificity. Chapter 6 insists on the benefits of including different types of controls in the PCR (e.g., PCR negatives and positives, tagging system controls, etc.). The most common causes of PCR failures and their solutions are addressed, as well as the precautions to take to avoid and monitor contaminations. Chapter 6 also deals with the particular case of blocking oligonucleotides, which aim at reducing the amplification of undesired sequences. It gives some valuable guidelines to design such oligonucleotides and use them efficiently. Finally, Chapter 6 presents different strategies for tagging individual samples during the amplification, to allow subsequent multiplexing during the sequencing step.

2004 ◽  
Vol 18 (16) ◽  
pp. 775-784 ◽  
Author(s):  
DIETER BRAUN

The Polymerase Chain Reaction (PCR) allows for highly sensitive and specific amplification of DNA. It is the backbone of many genetic experiments and tests. Recently, three labs independently uncovered a novel and simple way to perform a PCR reaction. Instead of repetitive heating and cooling, a temperature gradient across the reaction vessel drives thermal convection. By convection, the reaction liquid circulates between hot and cold regions of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates into twice the amount in the cold region. The amplification progresses exponentially as the convection moves on. We review the characteristics of the different approaches and show the benefits and prospects of the method.


Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 686-693 ◽  
Author(s):  
Benoit Van Coppenolle ◽  
Iwao Watanabe ◽  
Charles Van Hove ◽  
Gerard Second ◽  
Ning Huang ◽  
...  

The polymerase chain reaction was used to amplify random sequences of DNA from 25 accessions of Azolla to evaluate the usefulness of this technique for identification and phylogenetic analysis of this aquatic fern. Accessions were selected to represent all known species within the genus Azolla and to encompass the worldwide distribution of the fern. Primers of 10 nucleotides with 70% G + C content were used to generate randomly amplified polymorphic DNA from the symbiotic Azolla–Anabaena complex. Twenty-two primers were used and each primer gave 4–10 bands of different molecular weights for each accession. Bands were scored as present or absent for each accession and variation among accessions was quantified using Nei's genetic distances. A dendrogram summarizing phenetic relationships among the 25 accessions was generated using the unweighted pair-group method with arithmetic mean. Principal component analysis was also used to evaluate genetic similarities. Three distinct groups were identified: group 1 contains five species, group 2 contains the pinnata species, and group 3 contains the nilotica species. The analysis demonstrates that the major groups of Azolla species can be easily distinguished from one an other and, in addition, that closely related accessions within species can be identified. We further found that using 10 primers, a phylogeny that is essentially the same as that derived from 22 primers can be constructed. Our results suggest that total DNA extracted from the Azolla–Anabaena symbionts is useful for classification and phylogenetic studies of Azolla.Key words: Azolla–Anabaena symbiosis, genetic distances, polymerase chain reaction, principal component analysis.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1027-1032 ◽  
Author(s):  
DB Duggan ◽  
GD Ehrlich ◽  
FP Davey ◽  
S Kwok ◽  
J Sninsky ◽  
...  

Abstract A patient with a localized HTLV-I-associated lymphoproliferative disease that was misdiagnosed as Hodgkin's disease is presented. The patient's serum was negative for HTLV-I antibodies by enzyme-linked immunosorbent assay (ELISA), Western blot, and radioimmunoprecipitation. Tumor tissue DNA was negative for HTLV-I by Southern blotting but was positive for distinct HTLV-I sequences when subjected to DNA amplification using the polymerase chain reaction. We conclude that the clinical and pathologic diagnosis of HTLV-I-related lymphoma can be difficult and can be confused with Hodgkin's disease. Extremely sensitive molecular biological techniques may be required to establish a diagnosis of HTLV-I-induced lymphoma.


Agrikultura ◽  
2010 ◽  
Vol 21 (1) ◽  
Author(s):  
Nono Carsono ◽  
Sri Nurlianti ◽  
Inez Nur Indrayani ◽  
Ade Ismail ◽  
Tri Joko Santoso ◽  
...  

Transformasi gen Glu-1Dx5, pengendali utama karakter elastisitas dan daya mengembang adonan dari gandum, telah berhasil ditransfer ke dalam genom tanaman padi kultivar Fatmawati dengan menggunakan penembakan partikel, dengan tujuan untuk memperbaiki kualitas adonan tepung beras. Galur-galur harapan telah diperoleh, tetapi karena telah mengalami penyerbukan sendiri selama 1-2 generasi yang menyebabkan transgen mengalami segregasi, maka diperlukan upaya pendeteksian transgen pada populasi putative transgenik ini. Upaya ini dapat dilakukan, antara lain dengan menggunakan teknik Polymerase Chain Reaction (PCR) yang memungkinkan perbanyakan fragmen DNA yang spesifik (gen) secara cepat dalam jumlah banyak.  Percobaan ini bertujuan untuk mendapatkan tanaman padi transgenik yang memiliki gen Glu-1Dx5 pada dua generasi yang sedang bersegregasi. DNA genom dari 149 tanaman padi (generasi T1 sebanyak 14 tanaman, generasi T2 sebanyak 134 tanaman, dan satu tanaman non-transgenik) telah diekstraksi menggunakan Genomic DNA Purification Kit dari Fermentas. Plasmid pK+Dx5 digunakan sebagai positif kontrol, selain itu digunakan juga enzim Taq DNA polymerase dari Go Green Taq® Master Mix (Promega) dan 2 primer spesifik yang mengamplifikasi coding region dari Glu-1Dx5 (2,5 kb). Hasil percobaan menunjukkan, tanaman padi yang memiliki gen Glu-1Dx5 pada generasi T2-7 sebanyak 26 tanaman, T2-11 : 12 tanaman, T2-12 : 3 tanaman, T2-40 : 3 tanaman dan T2-45 : 5 tanaman. Seluruh tanaman generasi T1 tidak memiliki insert. Hasil ini menunjukkan bahwa gen Glu-1Dx5 sudah terintegrasi ke dalam genom tanaman padi kultivar Fatmawati dan diwariskan dari satu generasi ke generasi berikutnya.


2005 ◽  
Vol 131 (12) ◽  
pp. 821-828 ◽  
Author(s):  
S. Chariyalertsak ◽  
T. Khuhaprema ◽  
V. Bhudisawasdi ◽  
B. Sripa ◽  
S. Wongkham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document