PCR BY THERMAL CONVECTION

2004 ◽  
Vol 18 (16) ◽  
pp. 775-784 ◽  
Author(s):  
DIETER BRAUN

The Polymerase Chain Reaction (PCR) allows for highly sensitive and specific amplification of DNA. It is the backbone of many genetic experiments and tests. Recently, three labs independently uncovered a novel and simple way to perform a PCR reaction. Instead of repetitive heating and cooling, a temperature gradient across the reaction vessel drives thermal convection. By convection, the reaction liquid circulates between hot and cold regions of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates into twice the amount in the cold region. The amplification progresses exponentially as the convection moves on. We review the characteristics of the different approaches and show the benefits and prospects of the method.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yang Zhang ◽  
Chunyang Dai ◽  
Huiyan Wang ◽  
Yong Gao ◽  
Tuantuan Li ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is posing a serious threat to global public health. Reverse transcriptase real-time quantitative polymerase chain reaction (qRT-PCR) is widely used as the gold standard for clinical detection of SARS-CoV-2. Due to technical limitations, the reported positive rates of qRT-PCR assay of throat swab samples vary from 30 to 60%. Therefore, the evaluation of alternative strategies to overcome the limitations of qRT-PCR is required. A previous study reported that one-step nested (OSN)-qRT-PCR revealed better suitability for detecting SARS-CoV-2. However, information on the analytical performance of OSN-qRT-PCR is insufficient. Method In this study, we aimed to analyze OSN-qRT-PCR by comparing it with droplet digital PCR (ddPCR) and qRT-PCR by using a dilution series of SARS-CoV-2 pseudoviral RNA and a quality assessment panel. The clinical performance of OSN-qRT-PCR was also validated and compared with ddPCR and qRT-PCR using specimens from COVID-19 patients. Result The limit of detection (copies/ml) of qRT-PCR, ddPCR, and OSN-qRT-PCR were 520.1 (95% CI: 363.23–1145.69) for ORF1ab and 528.1 (95% CI: 347.7–1248.7) for N, 401.8 (95% CI: 284.8–938.3) for ORF1ab and 336.8 (95% CI: 244.6–792.5) for N, and 194.74 (95% CI: 139.7–430.9) for ORF1ab and 189.1 (95% CI: 130.9–433.9) for N, respectively. Of the 34 clinical samples from COVID-19 patients, the positive rates of OSN-qRT-PCR, ddPCR, and qRT-PCR were 82.35% (28/34), 67.65% (23/34), and 58.82% (20/34), respectively. Conclusion In conclusion, the highly sensitive and specific OSN-qRT-PCR assay is superior to ddPCR and qRT-PCR assays, showing great potential as a technique for detection of SARS-CoV-2 in patients with low viral loads.


Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 686-693 ◽  
Author(s):  
Benoit Van Coppenolle ◽  
Iwao Watanabe ◽  
Charles Van Hove ◽  
Gerard Second ◽  
Ning Huang ◽  
...  

The polymerase chain reaction was used to amplify random sequences of DNA from 25 accessions of Azolla to evaluate the usefulness of this technique for identification and phylogenetic analysis of this aquatic fern. Accessions were selected to represent all known species within the genus Azolla and to encompass the worldwide distribution of the fern. Primers of 10 nucleotides with 70% G + C content were used to generate randomly amplified polymorphic DNA from the symbiotic Azolla–Anabaena complex. Twenty-two primers were used and each primer gave 4–10 bands of different molecular weights for each accession. Bands were scored as present or absent for each accession and variation among accessions was quantified using Nei's genetic distances. A dendrogram summarizing phenetic relationships among the 25 accessions was generated using the unweighted pair-group method with arithmetic mean. Principal component analysis was also used to evaluate genetic similarities. Three distinct groups were identified: group 1 contains five species, group 2 contains the pinnata species, and group 3 contains the nilotica species. The analysis demonstrates that the major groups of Azolla species can be easily distinguished from one an other and, in addition, that closely related accessions within species can be identified. We further found that using 10 primers, a phylogeny that is essentially the same as that derived from 22 primers can be constructed. Our results suggest that total DNA extracted from the Azolla–Anabaena symbionts is useful for classification and phylogenetic studies of Azolla.Key words: Azolla–Anabaena symbiosis, genetic distances, polymerase chain reaction, principal component analysis.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1027-1032 ◽  
Author(s):  
DB Duggan ◽  
GD Ehrlich ◽  
FP Davey ◽  
S Kwok ◽  
J Sninsky ◽  
...  

Abstract A patient with a localized HTLV-I-associated lymphoproliferative disease that was misdiagnosed as Hodgkin's disease is presented. The patient's serum was negative for HTLV-I antibodies by enzyme-linked immunosorbent assay (ELISA), Western blot, and radioimmunoprecipitation. Tumor tissue DNA was negative for HTLV-I by Southern blotting but was positive for distinct HTLV-I sequences when subjected to DNA amplification using the polymerase chain reaction. We conclude that the clinical and pathologic diagnosis of HTLV-I-related lymphoma can be difficult and can be confused with Hodgkin's disease. Extremely sensitive molecular biological techniques may be required to establish a diagnosis of HTLV-I-induced lymphoma.


Author(s):  
М.П. Волков ◽  
И.А. Драбкин ◽  
Л.Б. Ершова ◽  
А.А. Назаренко

AbstractIn the paper the test data on new cycle-resistant thermoelectric modules are presented and discussed. These modules can be applied in medical equipment for polymerase chain reaction (PCR) to carry out DNA analysis with the help of rapid periodic heating and cooling of biological probes. However, high density of heat fluxes and, as a result, significant mechanical stresses in miniature thermoelectric modules involve special requirements to their reliability. The company RMT Ltd. has developed a technology for the production of highly reliable miniature thermoelectric modules that allowed them to withstand more than 500 thousand heating-cooling cycles (from 20 to 100°C) with a rate of 20°C/s and more.


2005 ◽  
Vol 131 (12) ◽  
pp. 821-828 ◽  
Author(s):  
S. Chariyalertsak ◽  
T. Khuhaprema ◽  
V. Bhudisawasdi ◽  
B. Sripa ◽  
S. Wongkham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document