Fire

Author(s):  
John Evans

Approaches towards substituting fossil fuel sources of their products, energy and petrochemicals are elaborated. Synthesis gas (CO/H2) provides an intermediate for reconverting waste (from plastics and biomass) as well as carbon fuels into petrochemicals from methanol to petrol to waxes. Energy sources such as nuclear power and photovoltaic cells are explained. Modes of forming hydrogen and avoiding the release of greenhouse gases to afford a green fuel are explained. Electrochemical methods provide secondary energy sources are alternatives are compared: e.g. by powering transport using fuel cells or batteries. The demands of these technologies on the supplies of key elements like lithium and cobalt are discussed to understand whether developments may or may not be sustainable.

Author(s):  
Kau-Fui Vincent Wong ◽  
Guillermo Amador

As society continues advancing into the future, more energy is required to supply the increasing population and energy demands. Unfortunately, traditional forms of energy production through the burning of carbon-based fuels are dumping harmful pollutants into the environment, resulting in detrimental, and possibly irreversible, effects on our planet. The burning of coal and fossil fuels provides energy at the least monetary cost for countries like the US, but the price being paid through their negative impact of our atmosphere is difficult to quantify. A rapid shift to clean, alternative energy sources is critical in order to reduce the amount of greenhouse gas emissions. For alternative energy sources to replace traditional energy sources that produce greenhouse gases, they must be capable of providing energy at equal or greater rates and efficiencies, while still functioning at competitive prices. The main factors hindering the pursuit of alternative sources are their high initial costs and, for some, intermittency. The creation of electrical energy from natural sources like wind, water, and solar is very desirable since it produces no greenhouse gases and makes use of renewable sources—unlike fossil fuels. However, the planning and technology required to tap into these sources and transfer energy at the rate and consistency needed to supply our society comes at a higher price than traditional methods. These high costs are a result of the large-scale implementation of the state-of-the-art technologies behind the devices required for energy cultivation and delivery from these unorthodox sources. On the other hand, as fossil fuel sources become scarcer, the rising fuel costs drive overall costs up and make traditional methods less cost effective. The growing scarcity of fossil fuels and resulting pollutants stimulate the necessity to transition away from traditional energy production methods. Currently, the most common alternative energy technologies are solar photovoltaics (PVs), concentrated solar power (CSP), wind, hydroelectric, geothermal, tidal, wave, and nuclear. Because of government intervention in countries like the US and the absence of the need to restructure the electricity transmission system (due to the similarity in geographical requirements and consistency in power outputs for nuclear and traditional plants), nuclear energy is the most cost competitive energy technology that does not produce greenhouse gases. Through the proper use of nuclear fission electricity at high efficiencies could be produced without polluting our atmosphere. However, the initial capital required to erect nuclear plants dictates a higher cost over traditional methods. Therefore, the government is providing help with the high initial costs through loan guarantees, in order to stimulate the growth of low-emission energy production. This paper analyzes the proposal for the use of nuclear power as an intermediate step before an eventual transition to greater dependence on energy from wind, water, and solar (WWS) sources. Complete dependence on WWS cannot be achieved in the near future, within 20 years, because of the unavoidable variability of these sources and the required overhaul of the electricity transmission system. Therefore, we look to nuclear power in the time being to help provide predictable power as a means to reduce carbon emissions, while the other technologies are refined and gradually implemented in order to meet energy demand on a consistent basis.


2018 ◽  
Vol 71 (10) ◽  
pp. 781 ◽  
Author(s):  
Ciaran J. McDonnell-Worth ◽  
Douglas R. MacFarlane

This review introduces the concept of direct H2O2 fuel cells and discusses the merits of these systems in comparison with other ‘clean-energy’ fuels. Through electrochemical methods, H2O2 fuel can be generated from environmentally benign energy sources such as wind and solar. It also produces only water and oxygen when it is utilised in a direct H2O2 fuel cell, making it a fully reversible system. The electrochemical methods for H2O2 production are discussed here as well as the recent research aimed at increasing the efficiency and power of direct H2O2 fuel cells.


2018 ◽  
Vol 64 ◽  
pp. 02006
Author(s):  
Anirudh N. Kulkarni ◽  
B. Arjun Bhat ◽  
Chinmay D. Sastry ◽  
K. S. Sridhar

Fossil fuel based energy sources are most commonly used because of the ease of availability and affordability, but have many long lasting negative effects, due to which a shift must be made to renewable and clean energy sources such as solar energy. Efficiency of the photovoltaic cells have increased by 1% every ten months, resulting in reduced costs and increased number of users. The project will explore the design and fabrication of an improved and efficient solar tapping device. An effort will be made to incorporate an architectural concept called “barrel vault” that is primarily used for natural lighting, over a Fresnel lens plate setup to act as a collector. The tracking mechanism incorporated is unique and can be modified to either have single axis or dual axis tracking depending on the requirements. Keeping in mind the environment and cost, an attempt has been made to fabricate the product with higher energy conversion rate, at an affordable cost using the above techniques. Upon analysing the results, the conclusion could be drawn that there was an increase in conversion rate of up to twice the traditional setup.


2015 ◽  
Vol 792 ◽  
pp. 623-628 ◽  
Author(s):  
Kseniia N. Grafskaia ◽  
Denis V. Anokhin ◽  
Jaime J. Hernandez Rueda ◽  
Dmitriy A. Ivanov

In present work a new setup for in situ studies of molecular self-assembling process for fabrication of ion-conducting membranes for “green” fuel cells was developed. Due to compactness, this unique setup can be used on the synchrotron beamlines. The GISAXS and optical microscopy data have shown the effectiveness of the control of molecular architecture by impact of high temperature, UV-irradiation and solvent vapors.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 340-342 ◽  
Author(s):  
Siegfried S. Hecker

Raj et al. describe the promise of nuclear energy as a sustainable, affordable, and carbon-free source available this century on a scale that can help meet the world's growing need for energy and help slow the pace of global climate change. However, the factor of millions gain in energy release from nuclear fssion compared to all conventional energy sources that tap the energy of electrons (Figure 1) has also been used to create explosives of unprecedented lethality and, hence, poses a serious challenge to the expansion of nuclear energy worldwide. Although the end of the cold war has eliminated the threat of annihilating humanity, the likelihood of a devastating nuclear attack has increased as more nations, subnational groups, and terrorists seek to acquire nuclear weapons.


Sign in / Sign up

Export Citation Format

Share Document