Interactive Learning with Mutual Explanations in Relational Domains

2021 ◽  
pp. 338-354
Author(s):  
Ute Schmid

With the growing number of applications of machine learning in complex real-world domains machine learning research has to meet new requirements to deal with the imperfections of real world data and the legal as well as ethical obligations to make classifier decisions transparent and comprehensible. In this contribution, arguments for interpretable and interactive approaches to machine learning are presented. It is argued that visual explanations are often not expressive enough to grasp critical information which relies on relations between different aspects or sub-concepts. Consequently, inductive logic programming (ILP) and the generation of verbal explanations from Prolog rules is advocated. Interactive learning in the context of ILP is illustrated with the Dare2Del system which helps users to manage their digital clutter. It is shown that verbal explanations overcome the explanatory one-way street from AI system to user. Interactive learning with mutual explanations allows the learning system to take into account not only class corrections but also corrections of explanations to guide learning. We propose mutual explanations as a building-block for human-like computing and an important ingredient for human AI partnership.

1998 ◽  
Vol 07 (01) ◽  
pp. 71-102
Author(s):  
PO-CHI CHEN ◽  
SUH-YIN LEE

One remarkable progress of recent research in machine learning is inductive logic programming (ILP). In most ILP system, clause specialization is one of the most important tasks. Usually, the clause specialization is performed by adding a literal at a time using hill-climbing heuristics. However, the single-literal addition can be caught by local pits when more than one literal needs to be added at a time increase the accuracy. Several techniques have been proposed for this problem but are restricted to relational domains. In this paper, we propose a technique called structure subtraction to construct a set of candidates for adding literals, single-literal or multiple-literals. This technique can be employed in any ILP system using top-down specilization and is not restricted to relational domains. A theory revision system is described to illustrate the use of structural subtraction.


2021 ◽  
pp. 1-24
Author(s):  
Avidit Acharya ◽  
Kirk Bansak ◽  
Jens Hainmueller

Abstract We introduce a constrained priority mechanism that combines outcome-based matching from machine learning with preference-based allocation schemes common in market design. Using real-world data, we illustrate how our mechanism could be applied to the assignment of refugee families to host country locations, and kindergarteners to schools. Our mechanism allows a planner to first specify a threshold $\bar g$ for the minimum acceptable average outcome score that should be achieved by the assignment. In the refugee matching context, this score corresponds to the probability of employment, whereas in the student assignment context, it corresponds to standardized test scores. The mechanism is a priority mechanism that considers both outcomes and preferences by assigning agents (refugee families and students) based on their preferences, but subject to meeting the planner’s specified threshold. The mechanism is both strategy-proof and constrained efficient in that it always generates a matching that is not Pareto dominated by any other matching that respects the planner’s threshold.


2021 ◽  
Vol 23 (1) ◽  
pp. 69-85
Author(s):  
Hemank Lamba ◽  
Kit T. Rodolfa ◽  
Rayid Ghani

Applications of machine learning (ML) to high-stakes policy settings - such as education, criminal justice, healthcare, and social service delivery - have grown rapidly in recent years, sparking important conversations about how to ensure fair outcomes from these systems. The machine learning research community has responded to this challenge with a wide array of proposed fairness-enhancing strategies for ML models, but despite the large number of methods that have been developed, little empirical work exists evaluating these methods in real-world settings. Here, we seek to fill this research gap by investigating the performance of several methods that operate at different points in the ML pipeline across four real-world public policy and social good problems. Across these problems, we find a wide degree of variability and inconsistency in the ability of many of these methods to improve model fairness, but postprocessing by choosing group-specific score thresholds consistently removes disparities, with important implications for both the ML research community and practitioners deploying machine learning to inform consequential policy decisions.


2006 ◽  
Vol 11 (2) ◽  
pp. 209-243 ◽  
Author(s):  
Vincent Claveau ◽  
Marie-Claude L'Homme

This article presents a method for discovering and organizing noun-verb (N-V) combinations found in a French corpus on computing. Our aim is to find N-V combinations in which verbs convey a “realization meaning” as defined in the framework of lexical functions (Mel’čuk 1996, 1998). Our approach, chiefly corpus-based, uses a machine learning technique, namely Inductive Logic Programming (ILP). The whole acquisition process is divided into three steps: (1) isolating contexts in which specific N-V pairs occur; (2) inferring linguistically-motivated rules that reflect the behaviour of realization N-V pairs; (3) projecting these rules on corpora to find other valid N-V pairs. This technique is evaluated in terms of the relevance of the rules inferred and in terms of the quality (recall and precision) of the results. Results obtained show that our approach is able to find these very specific semantic relationships (the realization N-V pairs) with very good success rates.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2266 ◽  
Author(s):  
Nikolaos Sideris ◽  
Georgios Bardis ◽  
Athanasios Voulodimos ◽  
Georgios Miaoulis ◽  
Djamchid Ghazanfarpour

The constantly increasing amount and availability of urban data derived from varying sources leads to an assortment of challenges that include, among others, the consolidation, visualization, and maximal exploitation prospects of the aforementioned data. A preeminent problem affecting urban planning is the appropriate choice of location to host a particular activity (either commercial or common welfare service) or the correct use of an existing building or empty space. In this paper, we propose an approach to address these challenges availed with machine learning techniques. The proposed system combines, fuses, and merges various types of data from different sources, encodes them using a novel semantic model that can capture and utilize both low-level geometric information and higher level semantic information and subsequently feeds them to the random forests classifier, as well as other supervised machine learning models for comparisons. Our experimental evaluation on multiple real-world data sets comparing the performance of several classifiers (including Feedforward Neural Networks, Support Vector Machines, Bag of Decision Trees, k-Nearest Neighbors and Naïve Bayes), indicated the superiority of Random Forests in terms of the examined performance metrics (Accuracy, Specificity, Precision, Recall, F-measure and G-mean).


2020 ◽  
Author(s):  
Chethan Sarabu ◽  
Sandra Steyaert ◽  
Nirav Shah

Environmental allergies cause significant morbidity across a wide range of demographic groups. This morbidity could be mitigated through individualized predictive models capable of guiding personalized preventive measures. We developed a predictive model by integrating smartphone sensor data with symptom diaries maintained by patients. The machine learning model was found to be highly predictive, with an accuracy of 0.801. Such models based on real-world data can guide clinical care for patients and providers, reduce the economic burden of uncontrolled allergies, and set the stage for subsequent research pursuing allergy prediction and prevention. Moreover, this study offers proof-of-principle regarding the feasibility of building clinically useful predictive models from 'messy,' participant derived real-world data.


Sign in / Sign up

Export Citation Format

Share Document