Transcranial brain stimulation and EEG/MEG

Author(s):  
Til Ole Bergmann ◽  
Leo Tomasevic ◽  
Hartwig Roman Siebner

Noninvasive transcranial brain stimulation (NTBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct or alternating current stimulation (TDCS/TACS) can be combined with electroencephalography (EEG) and magnetoencephalography (MEG). The combination of NTBS and EEG/MEG can 1) inform brain stimulation (where, when, and how to stimulate), and 2) reveal aftereffects of stimulation induced changes in cortical activity, and interregional connectivity (offline approach), as well as the immediate neuronal response to the stimulation (online approach). While offline approaches allow to separate NTBS and EEG/MEG in space and time, online approaches require concurrent stimulation and recording. While TMS and MEG cannot be combined online, concurrent TMS-EEG as well as TDCS/TACS-MEG/EEG are feasible but pose a range of methodological challenges at the technical and conceptual level. This chapter provides an introduction into the principal experimental approaches and research questions that can be tackled by the combination of transcranial brain stimulation and EEG/MEG. We review the technical challenges arising from concurrent recordings as well as measures to avoid or remove stimulation artefacts. We also discuss the conceptual caveats and required control conditions.

2018 ◽  
Vol 09 (03) ◽  
pp. 391-396 ◽  
Author(s):  
Soultana L. Papadopoulou ◽  
Avraam Ploumis ◽  
G. Exarchakos ◽  
S. J. Theodorou ◽  
A. Beris ◽  
...  

ABSTRACTVarious techniques and courses of treatment have been researched, proposed, and implemented to evaluate and treat poststroke dysphagia (PSD) which is one of the main medical conditions affecting not only elderly people, as previously assumed, but also in recent years younger populations as well. The effectiveness of therapeutic methods depends mainly on the expertise of an interdisciplinary team of therapists, as well as on the timely application of the treatment. The present review discusses the therapeutic benefits of repetitive transcranial magnetic stimulation (rTMS) in patients suffering from PSD regardless of the location of the lesion. The use of rTMS directly manipulates cortical brain stimulation to restore neuroplasticity in the affected brain areas. This review presents a synopsis of the available literature on the patient along with a discussion on the effectiveness of rTMS as a safe and easy to use promising technique in the rehabilitation of dysphagic patients. Although the results from the studies so far have been largely positive in that direction, the question still remains whether larger scale and longitudinal studies will be able to corroborate the aspiring future of rTMS. Therefore, research questions to advance further investigation on the application and future of this technique are much in need.


2015 ◽  
Vol 113 (3) ◽  
pp. 822-833 ◽  
Author(s):  
Daisuke Sato ◽  
Koya Yamashiro ◽  
Hideaki Onishi ◽  
Baba Yasuhiro ◽  
Yoshimitsu Shimoyama ◽  
...  

Previous studies examining the influence of afferent stimulation on corticospinal excitability have demonstrated that the intensity of afferent stimulation and the nature of the afferents targeted (cutaneous/proprioceptive) determine the effects. In this study, we assessed the effects of whole-hand water immersion (WI) and water flow stimulation (WF) on corticospinal excitability and intracortical circuits by measuring motor evoked potential (MEP) recruitment curves and conditioned MEP amplitudes. We further investigated whether whole-hand WF modulated movement-related cortical activity. Ten healthy subjects participated in three experiments, comprising the immersion of participants' right hands with (whole-hand WF) or without (whole-hand WI) water flow, and no immersion (control). We evaluated MEP recruitment curves produced by a single transcranial magnetic stimulation (TMS) pulse at increasing stimulus intensities, short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) using the paired TMS technique before and after 15 min of intervention. Movement-related cortical potentials (MRCPs) were evaluated to examine primary motor cortex, supplementary motor area, and somatosensory cortex excitability upon movement before and after whole-hand WF. After whole-hand WF, the slope of the MEP recruitment curve significantly increased, whereas SICI decreased and ICF increased in the contralateral motor cortex. The amplitude of the Bereitschaftspotential, negative slope, and motor potential of MRCPs significantly increased after whole-hand WF. We demonstrated that whole-hand WF increased corticospinal excitability, decreased SICI, and increased ICF, although whole-hand WI did not change corticospinal excitability and intracortical circuits. Whole-hand WF modulated movement-related cortical activity, increasing motor cortex activation for the planning and execution of voluntary movements.


2020 ◽  
Vol 129 (2) ◽  
pp. 205-217
Author(s):  
Callum G. Brownstein ◽  
Loïc Espeit ◽  
Nicolas Royer ◽  
Thomas Lapole ◽  
Guillaume Y. Millet

This study compared the change in silent period (SP) and short-interval intracortical inhibition (SICI) with conditioning stimulus and single-pulse transcranial magnetic stimulation (TMS) intensities (for SICI and SP, respectively) eliciting maximal and submaximal SICI and SP during fatiguing exercise. The results showed that changes in SICI were only detectable with intensities evoking maximal responses, with no difference between intensities for SP. These findings highlight the importance of maximizing SICI with appropriate intensities before measuring SICI during fatiguing exercise.


Sign in / Sign up

Export Citation Format

Share Document