Midkine, a Heparin-Binding Growth/Differentiation Factor, Exhibits Nerve Cell Adhesion and Guidance Activity for Neurite Outgrowth In Vitro

1996 ◽  
Vol 119 (6) ◽  
pp. 1150-1156 ◽  
Author(s):  
N. Kaneda ◽  
A. H. Talukder ◽  
H. Nishiyama ◽  
S. Koizumi ◽  
T. Muramatsu
2007 ◽  
Vol 32 (4) ◽  
pp. 917-920
Author(s):  
Hiroshi Tsuji ◽  
Piyanuch Sommani ◽  
Mitsutaka Hattori ◽  
Tetsuya Yamada ◽  
Hiroko Sato ◽  
...  

1991 ◽  
Vol 115 (4) ◽  
pp. 1137-1148 ◽  
Author(s):  
A P Skubitz ◽  
P C Letourneau ◽  
E Wayner ◽  
L T Furcht

The large carboxy-terminal globular domain (G domain; residues 2,110-3,060) of the A chain of murine-derived laminin has been shown to promote heparin binding, cell adhesion, and neurite outgrowth. This study was conducted to define the potential sequence(s) originating from the G domain of laminin with any of these functional activities. A series of peptides were synthesized from the G domain, termed GD peptides, each approximately 20 amino acids long and containing multiple positively charged amino acids. In direct 3H-heparin binding assays, peptides GD-1 and GD-2 bound high levels of 3H-heparin, while peptides GD-3 and GD-4 bound lower levels of 3H-heparin, and GD-5 bound essentially no 3H-heparin. The binding of 3H-heparin to peptides GD-1 and GD-2 appeared to be of high affinity, since significant binding of 3H-heparin to these two peptides was still observed even when the NaCl concentration was raised to 1.0 M. Four of the peptides, GD-1, GD-2, GD-3, and GD-4, directly promoted the adhesion and spreading of HT-1080 human fibrosarcoma cells as well as the outgrowth of neurites from chick spinal cord and dorsal root ganglia neurons. In addition, solutions of these peptides or antibodies generated against these peptides inhibited laminin-mediated HT-1080 cell adhesion. Antibodies against the beta 1 integrin subunit inhibited HT-1080 cell adhesion and neurite outgrowth on surfaces adsorbed with peptides GD-3 and GD-4. Therefore, laminin appears to have multiple, independent sequences in the G domain that serve a similar cell adhesion promoting function for different cell types. Furthermore, these results suggest that the sequences comprising peptides GD-3 and GD-4 use an integrin as a receptor, of which the beta 1 integrin subunit is a component for these various cell types.


2010 ◽  
Vol 107 (5) ◽  
pp. 2283-2288 ◽  
Author(s):  
William J. Brackenbury ◽  
Jeffrey D. Calhoun ◽  
Chunling Chen ◽  
Haruko Miyazaki ◽  
Nobuyuki Nukina ◽  
...  

Voltage-gated Na+ channel (VGSC) β1 subunits regulate cell–cell adhesion and channel activity in vitro. We previously showed that β1 promotes neurite outgrowth in cerebellar granule neurons (CGNs) via homophilic cell adhesion, fyn kinase, and contactin. Here we demonstrate that β1-mediated neurite outgrowth requires Na+ current (INa) mediated by Nav1.6. In addition, β1 is required for high-frequency action potential firing. Transient INa is unchanged in Scn1b (β1) null CGNs; however, the resurgent INa, thought to underlie high-frequency firing in Nav1.6-expressing cerebellar neurons, is reduced. The proportion of axon initial segments (AIS) expressing Nav1.6 is reduced in Scn1b null cerebellar neurons. In place of Nav1.6 at the AIS, we observed an increase in Nav1.1, whereas Nav1.2 was unchanged. This indicates that β1 is required for normal localization of Nav1.6 at the AIS during the postnatal developmental switch to Nav1.6-mediated high-frequency firing. In agreement with this, β1 is normally expressed with α subunits at the AIS of P14 CGNs. We propose reciprocity of function between β1 and Nav1.6 such that β1-mediated neurite outgrowth requires Nav1.6-mediated INa, and Nav1.6 localization and consequent high-frequency firing require β1. We conclude that VGSC subunits function in macromolecular signaling complexes regulating both neuronal excitability and migration during cerebellar development.


1994 ◽  
Vol 79 (2) ◽  
pp. 157-176 ◽  
Author(s):  
Heikki Rauvala ◽  
Anu Vanhala ◽  
Eero Castre´n ◽  
Riitta Nolo ◽  
Erkki Raulo ◽  
...  

1997 ◽  
Vol 324 (2) ◽  
pp. 461-466 ◽  
Author(s):  
Xiaoling LI ◽  
Juliane FRANZ ◽  
Friedrich LOTTSPEICH ◽  
Rudolf GÖTZ

Neurotrophin-6 (NT-6) was identified in the teleost fish Xiphophorus as a new member of the neurotrophin gene family. NT-6 binds specifically the glycosaminoglycan heparin. In this study NT-6 was expressed in a stably transfected mammalian cell line, and in insect cells via a recombinant baculovirus. It was purified to homogeneity and characterized by MS and N-terminal sequencing. NT-6 from both expression systems was proteolytically processed at one of two protease cleavage motifs and was found to be glycosylated. It supported the survival of embryonic chick sensory neurons; half-maximal survival was observed at 100 ng/ml. Furthermore, NT-6 elicited neurite outgrowth in explanted embryonic dorsal root ganglia. Addition of heparin into the medium did not potentiate the activity of NT-6 in survival assays. However, when a sensory ganglion explant was cultured in a collagen gel matrix assay adjacent to a heparin bead coated with NT-6, neurite outgrowth directed towards the bead was observed. This indicated that NT-6 was slowly released from the heparin bead generating a concentration gradient of NT-6 instrumental for axonal guidance in vitro. Thus the interaction of NT-6 with heparin might not be required for the activation of the cellular receptor for NT-6 on responsive cells but rather may serve to control, in vivo, the distribution of NT-6.


1986 ◽  
Vol 102 (1) ◽  
pp. 179-188 ◽  
Author(s):  
J B McCarthy ◽  
S T Hagen ◽  
L T Furcht

The active migration of tumor cells through extracellular matrices has been proposed to play a role in certain aspects of metastasis. Metastatic tumor cells migrate in vitro in response to substratum-bound adhesive glycoproteins such as fibronectin. The present studies use affinity-purified proteolytic fragments of fibronectin to determine the nature of adhesion- and/or motility-promoting domains within the protein. Two distinct fragments were identified with cell adhesion-promoting activities. By a number of criteria, the adhesive activity promoted by these two fragments was distinct. One fragment, a 75-kD tryptic fragment purified by monoclonal antibody chromatography, promoted the adhesion, spreading, and haptotactic motility of melanoma cells. Experiments using a synthetic cell attachment peptide in solution indicated that at least part of the attachment activity exhibited by the 75-kD fragment is mediated by the sequence arg-gly-asp-ser. It was not possible to demonstrate migration-stimulating activity using a small (11.5 kD) peptic fragment containing this sequence (Pierschbacher, M.D., E. G. Hayman, and E. Ruoslahti, 1981, Cell, 26:259-267) suggesting that another cell-binding activity within the 75 kD fragment distinct from arg-gly-asp-ser might be required for motility. The second fragment that stimulated melanoma adhesion was a 33-kD tryptic/catheptic carboxyl-terminal heparin-binding fragment, which is localized to the A chain of fibronectin. This fragment promotes adhesion and spreading but not the motility of these cells. Melanoma adhesion to this heparin-binding fragment was sensitive to the effects of cycloheximide, which contrasted adhesion to the haptotaxis-promoting fragment. Importantly, these studies illustrate that haptotaxis in response to fibronectin is not due to simple adhesion gradients of this protein. The results are discussed in light of a model for multiple distinct cell surface constituents mediating cell adhesion and motility on fibronectin.


2013 ◽  
Vol 75 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Aaron M. Milstone ◽  
Penny Bamford ◽  
Susan W. Aucott ◽  
Ningfeng Tang ◽  
Kimberly R. White ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 536-543 ◽  
Author(s):  
Giorgio Zauli ◽  
Federica Corallini ◽  
Fleur Bossi ◽  
Fabio Fischetti ◽  
Paolo Durigutto ◽  
...  

AbstractRecombinant osteoprotegerin (OPG) promoted the adhesion of both primary polymorphonuclear neutrophils (PMNs) and leukemic HL60 cells to endothelial cells. Leukocyte/endothelial cell adhesion was promoted by short (peak at 1 hour) preincubation of either endothelial cells or PMNs with OPG, and the peak of proadhesive activity was observed in the same range of OPG concentrations detected in the sera of patients affected by cardiovascular diseases. Although the cognate high-affinity ligands for OPG, membrane receptor activator of nuclear factor-κB ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were detected at significant levels on both PMNs and HL60 cells, they were not expressed on the surface of endothelial cells. However, preincubation of OPG with heparin abrogated its proadhesive activity, whereas pretreatment of endothelial cells with chondroitinase plus heparinases significantly decreased the proadhesive activity of OPG. Taken together, these findings suggest the involvement of both the ligand binding and the N-terminal heparin-binding domains of OPG in mediating its pro-adhesive activity. The relevance of these in vitro findings was underscored by in vivo experiments, in which the topical administration of recombinant OPG increased leukocyte rolling and adhesion to rat mesenteric postcapillary venules. Our data suggest that a pathological increase of OPG serum levels might play an important role in promoting leukocyte/endothelial cell adhesion.


1990 ◽  
Vol 111 (6) ◽  
pp. 2733-2745 ◽  
Author(s):  
P K Haugen ◽  
J B McCarthy ◽  
A P Skubitz ◽  
L T Furcht ◽  
P C Letourneau

Cellular interactions with fibronectin-treated substrata have a complex molecular basis involving multiple domains. A carboxy-terminal cell and heparin binding region of fibronectin (FN) is particularly interesting because it is a strong promoter of neurite outgrowth (Rogers, S.L., J.B. McCarthy, S.L. Palm, L.T. Furcht, and P.C. Letourneau, 1985. J. Neurosci. 5:369-378) and cell attachment (McCarthy, J.B., S.T. Hagen, and L.T. Furcht. 1986. J. Cell Biol. 102:179-188). To further understand the molecular mechanisms of neuronal interactions with this region of FN, we screened two peptides from the 33-kD heparin binding fragment of the FN A chain, FN-C/H II (KNNQKSEPLIGRKKT) and CS1 (Humphries, M.J., A. Komoriya, S.K. Akiyama, K. Olden, and K.M. Yamada. 1987. J. Biol. Chem. 262:6886-6892), for their ability to promote B104 neuroblastoma cell-substratum adhesion and neurite outgrowth. Both FN-C/H II and CS1 promoted B104 cell attachment in a concentration-dependent and saturable manner, with attachment to FN-C/H II exceeding attachment to CS1. In solution, both exogenous FN-C/H II or CS1 partially inhibited cell adhesion to the 33-kD fragment. Similar results were obtained with anti-FN-C/H II antibodies. In contrast, soluble GRGDSP did not affect B104 cell adhesion to FN-C/H II. These results indicate that both FN-C/H II and CS1 represent distinct, RGD-independent, cell adhesion-promoting sites active within the 33-kD fragment, and further define FN-C/H II as a novel neural recognition sequence in FN. B104 adhesion to FN-C/H II and CS1 differs in sensitivity to heparin, yet each peptide inhibited adhesion to the other peptide, suggesting cell adhesion is somehow related at the cellular level. Within the A chain 33-kD fragment, FN-C/H II and CS1 are contiguous, and might represent components of a larger domain with greater neurite-promoting activity since only the 33-kD fragment, and neither individual peptide, was effective at promoting B104 neurite outgrowth. These data further support the hypothesis that cell responses to FN are mediated by multiple sites involving both heparin-sensitive and -insensitive mechanisms.


Sign in / Sign up

Export Citation Format

Share Document