Expression of HB-GAM (heparin-binding growth-associated molecules) in the pathways of developing axonal processes in vivo and neurite outgrowth in vitro induced by HB-GAM

1994 ◽  
Vol 79 (2) ◽  
pp. 157-176 ◽  
Author(s):  
Heikki Rauvala ◽  
Anu Vanhala ◽  
Eero Castre´n ◽  
Riitta Nolo ◽  
Erkki Raulo ◽  
...  
1997 ◽  
Vol 324 (2) ◽  
pp. 461-466 ◽  
Author(s):  
Xiaoling LI ◽  
Juliane FRANZ ◽  
Friedrich LOTTSPEICH ◽  
Rudolf GÖTZ

Neurotrophin-6 (NT-6) was identified in the teleost fish Xiphophorus as a new member of the neurotrophin gene family. NT-6 binds specifically the glycosaminoglycan heparin. In this study NT-6 was expressed in a stably transfected mammalian cell line, and in insect cells via a recombinant baculovirus. It was purified to homogeneity and characterized by MS and N-terminal sequencing. NT-6 from both expression systems was proteolytically processed at one of two protease cleavage motifs and was found to be glycosylated. It supported the survival of embryonic chick sensory neurons; half-maximal survival was observed at 100 ng/ml. Furthermore, NT-6 elicited neurite outgrowth in explanted embryonic dorsal root ganglia. Addition of heparin into the medium did not potentiate the activity of NT-6 in survival assays. However, when a sensory ganglion explant was cultured in a collagen gel matrix assay adjacent to a heparin bead coated with NT-6, neurite outgrowth directed towards the bead was observed. This indicated that NT-6 was slowly released from the heparin bead generating a concentration gradient of NT-6 instrumental for axonal guidance in vitro. Thus the interaction of NT-6 with heparin might not be required for the activation of the cellular receptor for NT-6 on responsive cells but rather may serve to control, in vivo, the distribution of NT-6.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


2010 ◽  
Vol 76 (21) ◽  
pp. 7217-7225 ◽  
Author(s):  
Daniel P. MacEachran ◽  
M. E. Prophete ◽  
A. J. Sinskey

ABSTRACT Generally, prokaryotes store carbon as polyhydroxyalkanoate, starch, or glycogen. The Gram-positive actinomycete Rhodococcus opacus strain PD630 is noteworthy in that it stores carbon in the form of triacylglycerol (TAG). Several studies have demonstrated that R. opacus PD630 can accumulate up to 76% of its cell dry weight as TAG when grown under nitrogen-limiting conditions. While this process is well studied, the underlying molecular and biochemical mechanisms leading to TAG biosynthesis and subsequent storage are poorly understood. We designed a high-throughput genetic screening to identify genes and their products required for TAG biosynthesis and storage in R. opacus PD630. We identified a gene predicted to encode a putative heparin-binding hemagglutinin homolog, which we have termed tadA (triacylglycerol accumulation deficient), as being important for TAG accumulation. Kinetic studies of TAG accumulation in both the wild-type (WT) and mutant strains demonstrated that the tadA mutant accumulates 30 to 40% less TAG than the parental strain (WT). We observed that lipid bodies formed by the mutant strain were of a different size and shape than those of the WT. Characterization of TadA demonstrated that the protein is capable of binding heparin and of agglutinating purified lipid bodies. Finally, we observed that the TadA protein localizes to lipid bodies in R. opacus PD630 both in vivo and in vitro. Based on these data, we hypothesize that the TadA protein acts to aggregate small lipid bodies, found in cells during early stages of lipid storage, into larger lipid bodies and thus plays a key role in lipid body maturation in R. opacus PD630.


Blood ◽  
1988 ◽  
Vol 72 (3) ◽  
pp. 877-885 ◽  
Author(s):  
Y Kanakura ◽  
H Thompson ◽  
T Nakano ◽  
T Yamamura ◽  
H Asai ◽  
...  

Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of [35S] sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate [35S] proteoglycans. When “MMC-like” cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1- W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these “second generation PMC” formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.


2013 ◽  
Vol 451 (3) ◽  
pp. 407-415 ◽  
Author(s):  
Jackwee Lim ◽  
Sheng Yao ◽  
Martin Graf ◽  
Christoph Winkler ◽  
Daiwen Yang

Midkine is a heparin-binding di-domain growth factor, implicated in many biological processes as diverse as angiogenesis, neurogenesis and tumorigenesis. Elevated midkine levels reflect poor prognosis for many carcinomas, yet the molecular and cellular mechanisms orchestrating its activity remain unclear. At the present time, the individual structures of isolated half domains of human midkine are known and its functionally active C-terminal half domain remains a popular therapeutic target. In the present study, we determined the structure of full-length zebrafish midkine and show that it interacts with fondaparinux (a synthetic highly sulfated pentasaccharide) and natural heparin through a previously uncharacterized, but highly conserved, hinge region. Mutating six consecutive residues in the conserved hinge to glycine strongly abates heparin binding and midkine embryogenic activity. In contrast with previous in vitro studies, we found that the isolated C-terminal half domain is not active in vivo in embryos. Instead, we have demonstrated that the N-terminal half domain is needed to enhance heparin binding and mediate midkine embryogenic activity surprisingly in both heparin-dependent and -independent manners. Our findings provide new insights into the structural features of full-length midkine relevant for embryogenesis, and unravel additional therapeutic routes targeting the N-terminal half domain and conserved hinge.


Development ◽  
1989 ◽  
Vol 107 (Supplement) ◽  
pp. 141-148 ◽  
Author(s):  
J. M. W. Slack ◽  
B. G. Darlington ◽  
L. L. Gillespie ◽  
S. F. Godsave ◽  
H. V. Isaacs ◽  
...  

In early amphibian development, the mesoderm is formed around the equator of the blastula in response to an inductive signal from the endoderm. A screen of candidate substances showed that a small group of heparin-binding growth factors (HBGFs) were active as mesoderm-inducing agents in vitro. The factors aFGF, bFGF, kFGF and ECDGF all show similar potency and can produce inductions at concentrations above about 100 pM. The product of the murine int-2 gene is also active, but with a lower specific activity. Above the induction threshold there is a progressive increase of muscle formation with dose. Single blastula ectoderm cells can be induced and will differentiate in a defined medium to form mesodermal tissues. All inner blastula cells are competent to respond to the factors but outer cells, bearing oocyte-derived membrane, are not. Inducing activity can be extracted from Xenopus blastulae and binds to heparin like the previously described HBGFs. Antibody neutralization and Western blotting experiments identify this activity as bFGF. The amounts present are small but would be sufficient to evoke inductions in vivo. It is not yet known whether the bFGF is localized to the endoderm, although it is known that inducing activity secreted by endodermal cells can be neutralized by heparin. The competence of ectoderm to respond to HBGFs rises from about the 128-cell stage and falls again by the onset of gastrulation. This change is paralleled by a rise and fall of binding of 125I-aFGF. Chemical cross-linking reveals that this binding is attributable to a receptor of relative molecular mass about 130 × 103. The receptor is present both in the marginal zone, which responds to the signal in vivo, and in the animal pole region, which is not induced in vivo but which will respond to HBGFs in vitro. In the embryo, the induction in the vicinity of the dorsal meridian is much more potent than that around the remainder of the marginal zone circumference. Dorsal inductions contain notochord and will dorsalize ventral mesoderm with which they are later placed in contact. This effect might be due to a local high bFGF concentration or, more likely, to the secretion in the dorsal region of an additional, synergistic factor. It is known that TGF-β-1 and -2 can greatly increase the effect of low doses of bFGF, although it has not yet been demonstrated that they are present in the embryo. Lithium salts have a dorsalizing effect on whole embryos or on explants from the ventral marginal zone, and also show potent synergism when applied together with HBGFs.


2020 ◽  
Vol 21 (19) ◽  
pp. 7031
Author(s):  
Zhuo-Hao Liu ◽  
Yin-Cheng Huang ◽  
Chang-Yi Kuo ◽  
Chao-Ying Kuo ◽  
Chieh-Yu Chin ◽  
...  

Spinal cord injury (SCI) is associated with disability and a drastic decrease in quality of life for affected individuals. Previous studies support the idea that docosahexaenoic acid (DHA)-based pharmacological approach is a promising therapeutic strategy for the management of acute SCI. We postulated that a nanostructured material for controlled delivery of DHA at the lesion site may be well suited for this purpose. Toward this end, we prepare drug-loaded fibrous mats made of core-shell nanofibers by electrospinning, which contained a polylactic acid (PLA) shell for encapsulation of DHA within the core, for delivery of DHA in situ. In vitro study confirmed sustained DHA release from PLA/DHA core-shell nanofiber membrane (CSNM) for up to 36 days, which could significantly increase neurite outgrowth from primary cortical neurons in 3 days. This is supported by the upregulation of brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT-3) neural marker genes from qRT-PCR analysis. Most importantly, the sustained release of DHA could significantly increase the neurite outgrowth length from cortical neuron cells in 7 days when co-cultured with PLA/DHA CSNM, compared with cells cultured with 3 μM DHA. From in vivo study with a SCI model created in rats, implantation of PLA/DHA CSNM could significantly improve neurological functions revealed by behavior assessment in comparison with the control (no treatment) and the PLA CSNM groups. According to histological analysis, PLA/DHA CSNM also effectively reduced neuron loss and increased serotonergic nerve sprouting. Taken together, the PLA/DHA CSNM may provide a nanostructured drug delivery system for DHA and contribute to neuroprotection and promoting neuroplasticity change following SCI.


2003 ◽  
Vol 77 (4) ◽  
pp. 2768-2774 ◽  
Author(s):  
Bernd Hauck ◽  
Weidong Xiao

ABSTRACT Muscle is an attractive target for gene delivery because of its mass and because vectors can be delivered in a noninvasive fashion. Adeno-associated virus (AAV) has been shown to be effective for muscle-targeted gene transfer. Recent progress in characterization of AAV serotype 1 (AAV1) and AAV6 demonstrated that these two AAV serotypes are far more efficient in transducing muscle than is the traditionally used AAV2. Since all cis elements are identical in these vectors, the potential determinants for their differences in transducing muscle appear to be located within the AAV capsid proteins. In the present study, a series of AAV capsid mutants were generated to identify the major regions affecting AAV transduction efficiency in muscle. Replacement of amino acids 350 to 736 of AAV2 VP1 with the corresponding amino acids from VP1 of AAV1 resulted in a hybrid vector that behaved very similarly to AAV1 in vitro and in vivo in muscle. Characterization of additional mutants carrying smaller regions of the AAV1 VP1 amino acid sequence in the AAV2 capsid protein suggested that amino acids 350 to 430 of VP1 function as a major tissue tropism determinant. Further analysis showed that the heparin binding domain and the major antigenic determinants in the AAV capsid region were not necessary for the efficiency of AAV1 transduction of muscle.


Sign in / Sign up

Export Citation Format

Share Document