scholarly journals Complex distribution and velocity field of molecular gas in NGC 1316 as revealed by the Morita Array of ALMA

Author(s):  
Kana Morokuma-Matsui ◽  
Paolo Serra ◽  
Filippo M Maccagni ◽  
Bi-Qing For ◽  
Jing Wang ◽  
...  

Abstract We present the results of 12CO(J = 1–0) mosaicing observations of the cD galaxy NGC 1316 at kiloparsec resolution performed with the Morita Array of the Atacama Large Millimeter/submillimeter Array (ALMA). We reveal the detailed distribution of the molecular gas in the central region for the first time: a shell structure in the northwest, a barely resolved blob in the southeast of the center, and some clumps between them. The total molecular gas mass obtained with a standard Milky Way CO-to-H2 conversion factor is $(5.62 \pm 0.53) \times 10^{8}\, M_{\odot }$, which is consistent with previous studies. The disturbed velocity field of the molecular gas suggests that the molecular gas was injected very recently (<1 Gyr) if it has an external origin, and is in the process of settling into a rotating disk. Assuming that a low-mass gas-rich galaxy has accreted, the gas-to-dust ratio and H2-to-H i ratio are unusually low (∼28) and high (∼5.6), respectively. To explain these ratios additional processes should be taken into account, such as effective dust formation and conversion from atomic to molecular gas during the interaction. We also discuss the interaction between the nuclear jet and the molecular gas.

2020 ◽  
Vol 640 ◽  
pp. A13
Author(s):  
A. Santamaría-Miranda ◽  
I. de Gregorio-Monsalvo ◽  
N. Huélamo ◽  
A. L. Plunkett ◽  
Á. Ribas ◽  
...  

Context. Very low-mass stars are known to have jets and outflows, which is indicative of a scaled-down version of low-mass star formation. However, only very few outflows in very low-mass sources are well characterized. Aims. We characterize the bipolar molecular outflow of the very low-mass star Par-Lup3-4, a 0.12 M⊙ object known to power an optical jet. Methods. We observed Par-Lup3-4 with ALMA in Bands 6 and 7, detecting both the continuum and CO molecular gas. In particular, we studied three main emission lines: CO(2–1), CO(3–2), and 13CO(3–2). Results. Our observations reveal for the first time the base of a bipolar molecular outflow in a very low-mass star, as well as a stream of material moving perpendicular to the primary outflow of this source. The primary outflow morphology is consistent with the previously determined jet orientation and disk inclination. The outflow mass is 9.5 × 10−7 M⊙, with an outflow rate of 4.3 × 10−9 M⊙ yr−1. A new fitting to the spectral energy distribution suggests that Par-Lup3-4 may be a binary system. Conclusions. We have characterized Par-Lup3-4 in detail, and its properties are consistent with those reported in other very low-mass sources. This source provides further evidence that very low-mass sources form as a scaled-down version of low-mass stars.


1999 ◽  
Vol 190 ◽  
pp. 114-115
Author(s):  
Soojong Pak ◽  
D. T. Jaffe

In the Milky Way, the 12CO J = 1 → 0 line traces the molecular gas content. The conversion factor, XGAL, between the H2 column density, N(H2), and the velocity integrated intensity of CO, I(CO), has been measured via the virial theorem or via γ-ray emission (Solomon et al. 1987; Bloemen et al. 1986; Digel et al. 1997; and references therein).How can we apply XGAL to other galaxies where the metallicities are different from that of our Galaxy? The metallicity dependence of the conversion factor has been an issue. Cohen et al. (1988), Wilson (1995), and Arimoto, Sofue, & Tsujimoto (1996) argued that the value of X increases as the metallicity of the individual galaxy decreases. In contrast, Taylor, Kobulnicky, & Skillman (1996) showed that some low abundance galaxies have lower X.


2018 ◽  
Vol 619 ◽  
pp. A39 ◽  
Author(s):  
C. Feruglio ◽  
F. Fiore ◽  
S. Carniani ◽  
R. Maiolino ◽  
V. D’Odorico ◽  
...  

We present ALMA observations of the CO(6-5) and [CII] emission lines and the sub-millimeter continuum of the z ∼ 6 quasi-stellar object (QSO) SDSS J231038.88+185519.7. Compared to previous studies, we have analyzed a synthetic beam that is ten times smaller in angular size, we have achieved ten times better sensitivity in the CO(6-5) line, and two and half times better sensitivity in the [CII] line, enabling us to resolve the molecular gas emission. We obtain a size of the dense molecular gas of 2.9 ± 0.5 kpc, and of 1.4 ± 0.2 kpc for the 91.5 GHz dust continuum. By assuming that CO(6-5) is thermalized, and by adopting a CO to H2 conversion factor αCO = 0.8 M⊙K−1 (km s)−1 pc2, we infer a molecular gas mass of M(H2) = (3.2±0.2)×1010 M⊙. Assuming that the observed CO velocity gradient is due to an inclined rotating disk, we derive a dynamical mass of Mdynsin2(i)=(2.4 ± 0.5)×1010 M⊙, which is a factor of approximately two smaller than the previously reported estimate based on [CII]. Regarding the central black hole, we provide a new estimate of the black hole mass based on the C IV emission line detected in the VLT/X-shooter spectrum: MBH = (1.8 ± 0.5)×109 M⊙. We find a molecular gas fraction of μ = M(H2)/M* ∼ 4.4, where M∗ ≈ Mdyn − M(H2) − M(BH). We derive a ratio νrot/σ ≈ 1 − 2 suggesting high gas turbulence, outflows/inflows and/or complex kinematics due to a merger event. We estimate a global Toomre parameter Q ∼ 0.2 − 0.5, indicating likely cloud fragmentation. We compare, at the same angular resolution, the CO(6-5) and [CII] distributions, finding that dense molecular gas is more centrally concentrated with respect to [CII]. We find that the current BH growth rate is similar to that of its host galaxy.


2019 ◽  
Vol 631 ◽  
pp. A102 ◽  
Author(s):  
S. Bianchi ◽  
V. Casasola ◽  
M. Baes ◽  
C. J. R. Clark ◽  
E. Corbelli ◽  
...  

Aims. We compare the far-infrared to sub-millimetre dust emission properties measured in high Galactic latitude cirrus with those determined in a sample of 204 late-type DustPedia galaxies. The aim is to verify if it is appropriate to use Milky Way dust properties to derive dust masses in external galaxies. Methods. We used Herschel observations and atomic and molecular gas masses to estimate ϵ(250 μm), the disc-averaged dust emissivity at 250 μm, and from this, the absorption cross section per H atom σ(250 μm) and per dust mass κ(250 μm). The emissivity ϵ(250 μm) requires one assumption, which is the CO-to-H2 conversion factor, and the dust temperature is additionally required for σ(250 μm); yet another constraint on the dust-to-hydrogen ratio D/H, depending on metallicity, is required for κ(250 μm). Results. We find ϵ(250 μm) = 0.82 ± 0.07 MJy sr−1 (1020 H cm−2)−1 for galaxies with 4 <  F(250 μm)/F(500 μm) < 5. This depends only weakly on the adopted CO-to-H2 conversion factor. The value is almost the same as that for the Milky Way at the same colour ratio. Instead, for F(250 μm)/F(500 μm) > 6, ϵ(250 μm) is lower than predicted by its dependence on the heating conditions. The reduction suggests a variation in dust emission properties for spirals of earlier type, higher metallicity, and with a higher fraction of molecular gas. When the standard emission properties of Galactic cirrus are used for these galaxies, their dust masses might be underestimated by up to a factor of two. Values for σ(250 μm) and κ(250 μm) at the Milky Way metallicity are also close to those of the cirrus. Mild trends of the absorption cross sections with metallicity are found, although the results depend on the assumptions made.


1997 ◽  
Vol 159 ◽  
pp. 333-336
Author(s):  
D. Lutz ◽  
R. Genzel ◽  
E. Sturm ◽  
A.F.M. Moorwood ◽  
E. Oliva ◽  
...  

AbstractWe discuss 2.5–45 µm spectra of the Circinus galaxy and of Cen A, obtained with the Short Wavelength Spectrometer (SWS) on board the Infrared Space Observatory. The large number of detected ionic fine structure lines, observable also in visually obscured sources, provides strong constraints on the shape of the ionizing spectrum, which is found to exhibit a UV bump peaking at ~ 70 eV in the case of Circinus. Pure rotational emission of molecular hydrogen, directly probing warm molecular gas, can for the first time be detected in external galaxies.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax3793 ◽  
Author(s):  
◽  
Q. An ◽  
R. Asfandiyarov ◽  
P. Azzarello ◽  
P. Bernardini ◽  
...  

The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1/2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to ~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at ~300 GeV found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.


2016 ◽  
Vol 826 (2) ◽  
pp. 148 ◽  
Author(s):  
Andrew Emerick ◽  
Mordecai-Mark Mac Low ◽  
Jana Grcevich ◽  
Andrea Gatto

2018 ◽  
Vol 615 ◽  
pp. A122 ◽  
Author(s):  
S. König ◽  
S. Aalto ◽  
S. Muller ◽  
J. S. Gallagher III ◽  
R. J. Beswick ◽  
...  

Context. Minor mergers are important processes contributing significantly to how galaxies evolve across the age of the Universe. Their impact on the growth of supermassive black holes and star formation is profound – about half of the star formation activity in the local Universe is the result of minor mergers. Aims. The detailed study of dense molecular gas in galaxies provides an important test of the validity of the relation between star formation rate and HCN luminosity on different galactic scales – from whole galaxies to giant molecular clouds in their molecular gas-rich centers. Methods. We use observations of HCN and HCO+ 1−0 with NOEMA and of CO3−2 with the SMA to study the properties of the dense molecular gas in the Medusa merger (NGC 4194) at 1′′ resolution. In particular, we compare the distribution of these dense gas tracers with CO2−1 high-resolution maps in the Medusa merger. To characterize gas properties, we calculate the brightness temperature ratios between the three tracers and use them in conjunction with a non-local thermodynamic equilibrium (non-LTE) radiative line transfer model. Results. The gas represented by HCN and HCO+ 1−0, and CO3−2 does not occupy the same structures as the less dense gas associated with the lower-J CO emission. Interestingly, the only emission from dense gas is detected in a 200 pc region within the “Eye of the Medusa”, an asymmetric 500 pc off-nuclear concentration of molecular gas. Surprisingly, no HCN or HCO+ is detected for the extended starburst of the Medusa merger. Additionally, there are only small amounts of HCN or HCO+ associated with the active galactic nucleus. The CO3−2/2−1 brightness temperature ratio inside “the Eye” is ~2.5 – the highest ratio found so far – implying optically thin CO emission. The CO2−1/HCN 1−0 (~9.8) and CO2−1/HCO+ 1−0 (~7.9) ratios show that the dense gas filling factor must be relatively high in the central region, consistent with the elevated CO3−1/2−1 ratio. Conclusions. The line ratios reveal an extreme, fragmented molecular cloud population inside the Eye with large bulk temperatures (T > 300 K) and high gas densities (n(H2) > 104 cm-3). This is very different from the cool, self-gravitating structures of giant molecular clouds normally found in the disks of galaxies. The Eye of the Medusa is found at an interface between a large-scale minor axis inflow and the central region of the Medusa. Hence, the extreme conditions inside the Eye may be the result of the radiative and mechanical feedback from a deeply embedded, young and massive super star cluster formed due to the gas pile-up at the intersection. Alternatively, shocks from the inflowing gas entering the central region of the Medusa may be strong enough to shock and fragment the gas. For both scenarios, however, it appears that the HCN and HCO+ dense gas tracers are not probing star formation, but instead a post-starburst and/or shocked ISM that is too hot and fragmented to form newstars. Thus, caution is advised in taking the detection of emission from dense gas tracers as evidence of ongoing or imminent star formation.


2013 ◽  
Vol 8 (S299) ◽  
pp. 32-33
Author(s):  
L.M. Close ◽  
K. Follette ◽  
J.R. Males ◽  
K. Morzinski ◽  
T.J. Rodigas ◽  
...  

AbstractWe utilized the new high-order (250-378 mode) Magellan Adaptive Optics system (MagAO) to obtain very high-resolution science in the visible with MagAO's VisAO CCD camera. In the good-median seeing conditions of Magellan (0.5–0.7″) we find MagAO delivers individual short exposure images as good as 19 mas optical resolution. Due to telescope vibrations, long exposure (60s) r' (0.63μm) images are slightly coarser at FWHM = 23-29 mas (Strehl ~ 28%) with bright (R < 9 mag) guide stars. These are the highest resolution filled-aperture images published to date. Images of the young (~ 1 Myr) Orion Trapezium θ1 Ori A, B, and C cluster members were obtained with VisAO. In particular, the 32 mas binary θ1 Ori C1C2 was easily resolved in non-interferometric images for the first time. Relative positions of the bright trapezium binary stars were measured with ~ 0.6–5 mas accuracy. In the second commissioning run we were able to correct 378 modes and achieved good contrasts (Strehl>20% on young transition disks at Hα). We discuss the contrasts achieved at Hα and the possibility of detecting low mass (~ 1–5 Mjup) planets (past 5AU) with our new SAPPHIRES survey with MagAO at Hα.


Author(s):  
Dibyo Sarkar ◽  
Siddhartha Das ◽  
Sushanta K. Mitra

In this paper, we obtain the velocity field in a wedge in a Three Phase Contact Line (TPCL) in an electrolyte drop which is evaporating on a charged solid. Combination of an electrolyte solution and the charged surface leads to the formation of an Electric Double Layer (EDL), which in presence of the evaporation-triggered pressure-driven transport, leads to the generation of a streaming current that causes an electrokinetic transport. Hence, we analyze for the first time an electrokinetic transport in a charged wedge in presence of an evaporation-induced advective flux. Our results exhibit flow patterns that are distinctly different as compared to that of the case where there is no such electrokinetic transport and the problem is merely that of evaporation in a wedge.


Sign in / Sign up

Export Citation Format

Share Document