scholarly journals Subgroups of quantum groups

2018 ◽  
Vol 70 (2) ◽  
pp. 509-533
Author(s):  
Georgia Christodoulou

Abstract We investigate the notion of a subgroup of a quantum group. We suggest a general definition, which takes into account the work that has been done for quantum homogeneous spaces. We further restrict our attention to reductive subgroups, where some faithful flatness conditions apply. Furthermore, we proceed with a categorical approach to the problem of finding quantum subgroups. We translate all existing results into the language of module and monoidal categories and give another characterization of the notion of a quantum subgroup.

2005 ◽  
Vol 4 (1) ◽  
pp. 135-173 ◽  
Author(s):  
Saad Baaj ◽  
Stefaan Vaes

For a matched pair of locally compact quantum groups, we construct the double crossed product as a locally compact quantum group. This construction generalizes Drinfeld’s quantum double construction. We study the modular theory and the $\mathrm{C}^*$-algebraic properties of these double crossed products, as well as several links between double crossed products and bicrossed products. In an appendix, we study the Radon–Nikodym derivative of a weight under a quantum group action (following Yamanouchi) and obtain, as a corollary, a new characterization of closed quantum subgroups. AMS 2000 Mathematics subject classification: Primary 46L89. Secondary 46L65


Author(s):  
M. Ferrara ◽  
M. Trombetti

AbstractLet G be an abelian group. The aim of this short paper is to describe a way to identify pure subgroups H of G by looking only at how the subgroup lattice $$\mathcal {L}(H)$$ L ( H ) embeds in $$\mathcal {L}(G)$$ L ( G ) . It is worth noticing that all results are carried out in a local nilpotent context for a general definition of purity.


Author(s):  
Martijn Caspers

Abstract One of the main aims of this paper is to give a large class of strongly solid compact quantum groups. We do this by using quantum Markov semigroups and noncommutative Riesz transforms. We introduce a property for quantum Markov semigroups of central multipliers on a compact quantum group which we shall call ‘approximate linearity with almost commuting intertwiners’. We show that this property is stable under free products, monoidal equivalence, free wreath products and dual quantum subgroups. Examples include in particular all the (higher-dimensional) free orthogonal easy quantum groups. We then show that a compact quantum group with a quantum Markov semigroup that is approximately linear with almost commuting intertwiners satisfies the immediately gradient- ${\mathcal {S}}_2$ condition from [10] and derive strong solidity results (following [10]). Using the noncommutative Riesz transform we also show that these quantum groups have the Akemann–Ostrand property; in particular, the same strong solidity results follow again (now following [27]).


2013 ◽  
Vol 65 (5) ◽  
pp. 1073-1094 ◽  
Author(s):  
Mehrdad Kalantar ◽  
Matthias Neufang

AbstractIn this paper we use the recent developments in the representation theory of locally compact quantum groups, to assign to each locally compact quantum group 𝔾 a locally compact group 𝔾˜ that is the quantum version of point-masses and is an invariant for the latter. We show that “quantum point-masses” can be identified with several other locally compact groups that can be naturally assigned to the quantum group 𝔾. This assignment preserves compactness as well as discreteness (hence also finiteness), and for large classes of quantum groups, amenability. We calculate this invariant for some of the most well-known examples of non-classical quantum groups. Also, we show that several structural properties of 𝔾 are encoded by 𝔾˜; the latter, despite being a simpler object, can carry very important information about 𝔾.


2014 ◽  
Vol 57 (4) ◽  
pp. 708-720 ◽  
Author(s):  
Michael Brannan

AbstractIt is known that the normalized standard generators of the free orthogonal quantum groupO+Nconverge in distribution to a free semicircular system as N → ∞. In this note, we substantially improve this convergence result by proving that, in addition to distributional convergence, the operator normof any non-commutative polynomial in the normalized standard generators ofO+Nconverges asN→ ∞ to the operator norm of the corresponding non-commutative polynomial in a standard free semicircular system. Analogous strong convergence results are obtained for the generators of free unitary quantum groups. As applications of these results, we obtain a matrix-coefficient version of our strong convergence theorem, and we recover a well-knownL2-L∞norm equivalence for noncommutative polynomials in free semicircular systems.


1991 ◽  
Vol 06 (13) ◽  
pp. 1177-1183 ◽  
Author(s):  
TETSUO DEGUCHI ◽  
AKIRA FUJII

We present the quantum formal group derived from the hybrid-type model. The quantum group structure is given by the direct sum of several quantum groups. We show that by applying the quantum inverse scattering method to the direct sum of the several quantum groups we can reconstruct the hybrid-type model.


2014 ◽  
Vol 57 (2) ◽  
pp. 424-430 ◽  
Author(s):  
Piotr M. Sołtan ◽  
Ami Viselter

AbstractIn this short note we introduce a notion called quantum injectivity of locally compact quantum groups, and prove that it is equivalent to amenability of the dual. In particular, this provides a new characterization of amenability of locally compact groups.


2019 ◽  
Vol 18 (08) ◽  
pp. 1950155 ◽  
Author(s):  
Teodor Banica ◽  
Alexandru Chirvasitu

Given a discrete group [Formula: see text] and a number [Formula: see text], a unitary representation [Formula: see text] is called quasi-flat when the eigenvalues of each [Formula: see text] are uniformly distributed among the [Formula: see text]th roots of unity. The quasi-flat representations of [Formula: see text] form altogether a parametric matrix model [Formula: see text]. We compute here the universal model space [Formula: see text] for various classes of discrete groups, notably with results in the case where [Formula: see text] is metabelian. We are particularly interested in the case where [Formula: see text] is a union of compact homogeneous spaces, and where the induced representation [Formula: see text] is stationary in the sense that it commutes with the Haar functionals. We present several positive and negative results on this subject. We also discuss similar questions for the discrete quantum groups, proving a stationarity result for the discrete dual of the twisted orthogonal group [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document