scholarly journals Pneumocystis pneumonia and rheumatic disease: diagnostic potential of circulating microbial cell-free DNA sequencing

Author(s):  
Jia Li ◽  
Jun Li ◽  
Yuetian Yu ◽  
Rongsheng Wang ◽  
Mi Zhou ◽  
...  

Abstract Objectives This study aimed to explore the clinical utility of circulating microbial cell-free DNA (cfDNA) sequencing as a non-invasive approach for diagnosing Pneumocystis jirovecii pneumonia (PJP) in immunocompromised patients with rheumatic disease (RD). Methods The study included 72 RD patients with suspected lung infections admitted to Renji hospital. Eighteen individuals were diagnosed with PJP, and 54 patients without PJP were enrolled as control group. All patients had undergone pulmonary computed tomography scans, and blood and respiratory tract specimens had been subjected to metagenomic next-generation sequencing (mNGS) and conventional microbiological tests. The clinical and laboratory parameters were collected and efficacy of circulating microbial cfDNA of PJP was evaluated. Results Of the 18 patients with PJP, the average age was 53.0 years and the median time between RD diagnosis and PJP presentation was 126 days (IQR 84.0–176.3). Low circulating CD4+ cell counts and a lack of PJP prophylaxis were observed in the patients. Metagenomic NGS of circulating microbial cfDNA was performed in 69 patients including 15 cases with PJP and 54 controls. Twelve (80%) of 15 analysed blood samples contained Pneumocystis jirovecii (PJ) sequences in PJP group with PJ not detected among controls. There was a significant difference between PJP and non-PJP groups (p < 0.001) with a sensitivity of 83.3% and specificity of 100% when using plasma cfDNA sequencing. Higher β-D-glucan levels were found in patients with positive results for PJ in plasma cfDNA sequencing. Conclusion Metagenomic NGS of circulating microbial cfDNA is a potential tool for diagnosing PJP in RD patients.

2021 ◽  
Vol 8 ◽  
Author(s):  
Lili Wang ◽  
Wenzheng Guo ◽  
Hui Shen ◽  
Jian Guo ◽  
Donghua Wen ◽  
...  

Sepsis is a common life-threatening disease in the intensive care unit (ICU) that is usually treated empirically without pathogen identification. As a non-invasive and high-throughput technology, plasma microbial cell-free DNA (mcfDNA) sequencing can detect unknown pathogens independent of previous clinical or laboratory information. In this study, a total of 199 cases suspected of bloodstream infection (BSI) from January 2020 to June 2020 were collected, and potential pathogens were detected by simultaneous blood culture and plasma mcfDNA sequencing. Other clinical microbiological assays were performed within 7 days of plasma mcfDNA sequencing, including smear, culture of samples taken from relevant infected sites, and β-D-glucan/galactomannan (BDG/GM) tests, among others. The diagnoses were classified as sepsis [94 (47.2%)], non-sepsis [87 (43.7%)], and non-infectious disease [18 (9.0%)]. The sensitivity and specificity of plasma mcfDNA sequencing for diagnosing sepsis were 68.1 and 63.2%, respectively, which were significantly better than those of blood culture, especially for the common bacteria that cause hospital-acquired infection, namely, Acinetobacter baumannii (p < 0.01) and Klebsiella pneumoniae (p < 0.01), and DNA viruses (plasma mcfDNA sequencing only, p < 0.01). However, there was no significant difference in the rate of positivity between plasma mcfDNA sequencing and blood culture for antibiotic-non-exposed cases (43.6 vs. 30.9%, p = 0.17). In the non-sepsis group, 44.8% of cases (13/29) detected only by plasma mcfDNA sequencing showed infections in other parts of the body, such as lower respiratory infection (LRI), intra-abdominal infection (IAI) and central nervous system infection (CNSI). For some common pathogens (not including anaerobes), turnaround time (TAT) 3 (TAT from the initiation of blood sample processing by nucleic acid extraction to the completion of sequencing analysis) was longer than TAT1 (TAT from blood culture bottles in Virtuo to off Virtuo). With disease progression, significant dynamic changes in microbial species were clearly detected by plasma mcfDNA sequencing.


Oncotarget ◽  
2017 ◽  
Vol 8 (42) ◽  
pp. 71946-71953 ◽  
Author(s):  
Dong Wang ◽  
Yang Hu ◽  
Ting Li ◽  
Heng-Mo Rong ◽  
Zhao-Hui Tong

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S390-S390
Author(s):  
Priya Edward ◽  
William V La Via ◽  
Mehreen Arshad ◽  
Kiran Gajurel

Abstract Background Mycoplasma hominis is typically associated with genital infections in women and is a rare cause of musculoskeletal infections often in immunocompromised hosts. Diagnosis of invasive Mycoplasma hominis infections are difficult due to challenges in culturing these organisms. Molecular diagnostics require an index of suspicion which may not be present at the time of tissue sampling. Accurate, rapid diagnosis of Mycoplasma hominis infections are important for antibiotic management. Methods Two cases of invasive Mycoplasma hominis infections are presented in which the Karius test (KT) was used to make the diagnosis. The KT is a CLIA certified/CAP-accredited next-generation sequencing (NGS) plasma test that detects microbial cell-free DNA (mcfDNA). After mcfDNA is extracted and NGS performed, human reads are removed and remaining sequences are aligned to a curated database of > 1400 organisms. Organisms present above a statistical threshold are reported. Case review was performed for clinical correlation. Results A young woman with lupus nephritis status post renal transplant developed persistent fever with progressive multifocal culture-negative osteoarticular infection despite empiric ceftriaxone. An adolescent female presented with an ascending pelvic infection progressing to purulent polymicrobial peritonitis (see table) requiring surgical debridement and cefipime, metronidazole and micafungin therapy; her course was complicated by progressive peritonitis/abscesses. Karius testing detected high-levels of Mycoplasma hominis mcfDNA in both cases – at 3251 molecules/microliter (MPM) in the first case and 3914 MPM in the second case. The normal range of Mycoplasma hominis mcfDNA in a cohort of 684 normal adults is 0 MPM. The patients rapidly improved with atypical coverage with doxycycline and levofloxaxin. Clinical findings in 2 patients with M. hominis infection detected by the Karius Test Conclusion Open-ended, plasma-based NGS for mcfDNA provides a rapid, non-invasive method to diagnose invasive Mycoplasma hominis infection. This case series highlights the potential to diagnose infections caused by fastidious pathogens to better inform antimicrobial therapy and achieve favorable outcomes. Disclosures William V. La Via, MD, Karius (Employee)


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brian C.-H. Chiu ◽  
Chang Chen ◽  
Qiancheng You ◽  
Rudyard Chiu ◽  
Girish Venkataraman ◽  
...  

AbstractThe 5-methylcytosines (5mC) have been implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the role of 5-hydroxymethylcytosines (5hmC) that are generated from 5mC through active demethylation, in lymphomagenesis is unknown. We profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 73 newly diagnosed patients with DLBCL and FL. We identified 294 differentially modified genes between DLBCL and FL. The differential 5hmC in the DLBCL/FL-differentiating genes co-localized with enhancer marks H3K4me1 and H3K27ac. A four-gene panel (CNN2, HMG20B, ACRBP, IZUMO1) robustly represented the overall 5hmC modification pattern that distinguished FL from DLBCL with an area under curve of 88.5% in the testing set. The median 5hmC modification levels in signature genes showed potential for separating patients for risk of all-cause mortality. This study provides evidence that genome-wide 5hmC profiles in cfDNA differ between DLBCL and FL and could be exploited as a non-invasive approach.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Adriana P. Echeverria ◽  
Ian S. Cohn ◽  
David C. Danko ◽  
Sara Shanaj ◽  
Lily Blair ◽  
...  

Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-216013
Author(s):  
Haopu Yang ◽  
Ghady Haidar ◽  
Nameer S Al-Yousif ◽  
Haris Zia ◽  
Daniel Kotok ◽  
...  

Host inflammatory responses predict worse outcome in severe pneumonia, yet little is known about what drives dysregulated inflammation. We performed metagenomic sequencing of microbial cell-free DNA (mcfDNA) in 83 mechanically ventilated patients (26 culture-positive, 41 culture-negative pneumonia, 16 uninfected controls). Culture-positive patients had higher levels of mcfDNA than those with culture-negative pneumonia and uninfected controls (p<0.005). Plasma levels of inflammatory biomarkers (fractalkine, procalcitonin, pentraxin-3 and suppression of tumorigenicity-2) were independently associated with mcfDNA levels (adjusted p<0.05) among all patients with pneumonia. Such host–microbe interactions in the systemic circulation of patients with severe pneumonia warrant further large-scale clinical and mechanistic investigations.


2021 ◽  
pp. 1-7
Author(s):  
Ido Ben Zvi ◽  
Oren Shaia Harel ◽  
Amos Douvdevani ◽  
Penina Weiss ◽  
Chen Cohen ◽  
...  

OBJECTIVE Mild traumatic brain injury (mTBI) is a major cause of emergency room (ER) admission. Thirty percent of mTBI patients have postconcussion syndrome (PCS), and 15% have symptoms for over a year. This population is underdiagnosed and does not receive appropriate care. The authors proposed a fast and inexpensive fluorometric measurement of circulating cell-free DNA (cfDNA) as a biomarker for PCS. cfDNA is a proven, useful marker of a variety of acute pathological conditions such as trauma and acute illness. METHODS Thirty mTBI patients were recruited for this prospective single-center trial. At admission, patients completed questionnaires and blood was drawn to obtain cfDNA. At 3–4 months after injury, 18 patients returned for cognitive assessments with questionnaires and the Color Trails Test (CTT). The fast SYBR Gold assay was used to measure cfDNA. RESULTS Seventeen men and 13 women participated in this trial. The mean ± SD age was 50.9 ± 13.9 years. Of the 18 patients who returned for cognitive assessment, one-third reported working fewer hours, 4 (22.2%) changed their driving patterns, and 5 (27.7%) reduced or stopped performing physical activity. The median cfDNA level of the mTBI group was greater than that of the matched healthy control group (730.5 vs 521.5 ng/ml, p = 0.0395). Admission cfDNA concentration was negatively correlated with performance on the CTT1 and CTT2 standardized tests (r = −0.559 and −0.599), meaning that greater cfDNA level was correlated with decreased cognitive performance status. The performance of the patients with normal cfDNA level included in the mTBI group was similar to that of the healthy participants. In contrast, the increased cfDNA group (> 800 ng/ml) had lower scores on the CTT tests than the normal cfDNA group (p < 0.001). Furthermore, patients with moderate/severe cognitive impairment according to CTT1 results had a greater median cfDNA level than the patients with scores indicating mild impairment or normal function (1186 vs 473.5 ng/ml, p = 0.0441, area under the receiver operating characteristic curve = 0.8393). CONCLUSIONS The data from this pilot study show the potential to use cfDNA, as measured with a fast test, as a biomarker to screen for PCS in the ER. A large-scale study is required to establish the value of cfDNA as an early predictor of PCS.


2019 ◽  
Vol 4 (4) ◽  
pp. 663-674 ◽  
Author(s):  
Timothy A. Blauwkamp ◽  
Simone Thair ◽  
Michael J. Rosen ◽  
Lily Blair ◽  
Martin S. Lindner ◽  
...  

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S725-S725
Author(s):  
Fernando H Centeno ◽  
Asim A Ahmed ◽  
David K Hong ◽  
Sudeb Dalai ◽  
Laila Woc-Colburn

Abstract Background Rickettsia typhi typically causes a nonspecific syndrome characterized by fever, rash, and headache but can rarely progress to severe disease. R. typhi is transmitted by the rat flea and there has been an increased incidence in Houston, TX. Establishing the diagnosis can be challenging and is often made by serological studies. Prompt therapy with doxycycline is important especially in severe disease. Methods Karius Test results from the prior 2 years (Redwood City, CA) were reviewed for detections of R. typhi. The Karius Test is a CLIA-certified/CAP-accredited next-generation sequencing (NGS) plasma test that detects microbial cell free DNA (mcfDNA). After mcfDNA is extracted and NGS performed, human sequences are removed and remaining sequences are aligned to a curated pathogen database of >1,000 organisms. Organisms present above a statistical threshold are reported. Chart review was conducted on the cases of R. typhi identified by the Karius Test. Results The Karius Test detected R. typhi in 6 adult patients, 4 women and 2 men, from a medical center in Houston, TX. In 2 patients, R. typhi mcfDNA was present in the raw sequencing data but at an abundance below validated statistical thresholds. R. typhi mcfDNA was not found in negative controls run simultaneously with the samples. All patients presented with fever, 4 presented with headache, 3 presented with gastrointestinal symptoms, 3 developed rash, one presented with hypotension. Laboratory data were available for 5 patients. Four patients developed thrombocytopenia, 5 had anemia, 4 patients had WBC < 5, 4 had transaminase elevation and 3 developed hyponatremia. 3 out of 5 had R. typhi serologies sent; all 3 were positive (including two of the patients with R. typhi mcfDNA levels below threshold). In the two other patients the Karius test was the means of establishing the diagnosis. 3 out of 5 patients where data were available were treated with doxycyline. Conclusion The Karius test was able to detect R. typhi in a cluster of 6 patients in one medical center in Houston, TX. NGS for mcfDNA offers a rapid means of detecting R. typhi infection. Accurate, rapid diagnosis of R. typhi has important public health implications given its vector-borne mechanism of transmission. Disclosures All authors: No reported disclosures.


Sign in / Sign up

Export Citation Format

Share Document