scholarly journals Expert-level automated sleep staging of long-term scalp electroencephalography recordings using deep learning

SLEEP ◽  
2020 ◽  
Vol 43 (11) ◽  
Author(s):  
Maurice Abou Jaoude ◽  
Haoqi Sun ◽  
Kyle R Pellerin ◽  
Milena Pavlova ◽  
Rani A Sarkis ◽  
...  

Abstract Study Objectives Develop a high-performing, automated sleep scoring algorithm that can be applied to long-term scalp electroencephalography (EEG) recordings. Methods Using a clinical dataset of polysomnograms from 6,431 patients (MGH–PSG dataset), we trained a deep neural network to classify sleep stages based on scalp EEG data. The algorithm consists of a convolutional neural network for feature extraction, followed by a recurrent neural network that extracts temporal dependencies of sleep stages. The algorithm’s inputs are four scalp EEG bipolar channels (F3-C3, C3-O1, F4-C4, and C4-O2), which can be derived from any standard PSG or scalp EEG recording. We initially trained the algorithm on the MGH–PSG dataset and used transfer learning to fine-tune it on a dataset of long-term (24–72 h) scalp EEG recordings from 112 patients (scalpEEG dataset). Results The algorithm achieved a Cohen’s kappa of 0.74 on the MGH–PSG holdout testing set and cross-validated Cohen’s kappa of 0.78 after optimization on the scalpEEG dataset. The algorithm also performed well on two publicly available PSG datasets, demonstrating high generalizability. Performance on all datasets was comparable to the inter-rater agreement of human sleep staging experts (Cohen’s kappa ~ 0.75 ± 0.11). The algorithm’s performance on long-term scalp EEGs was robust over a wide age range and across common EEG background abnormalities. Conclusion We developed a deep learning algorithm that achieves human expert level sleep staging performance on long-term scalp EEG recordings. This algorithm, which we have made publicly available, greatly facilitates the use of large long-term EEG clinical datasets for sleep-related research.

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingyu Fu ◽  
Yitian Wang ◽  
Zixin Chen ◽  
Jin Li ◽  
Fengguo Xu ◽  
...  

This study centers on automatic sleep staging with a single channel electroencephalography (EEG), with some significant findings for sleep staging. In this study, we proposed a deep learning-based network by integrating attention mechanism and bidirectional long short-term memory neural network (AT-BiLSTM) to classify wakefulness, rapid eye movement (REM) sleep and non-REM (NREM) sleep stages N1, N2 and N3. The AT-BiLSTM network outperformed five other networks and achieved an accuracy of 83.78%, a Cohen’s kappa coefficient of 0.766 and a macro F1-score of 82.14% on the PhysioNet Sleep-EDF Expanded dataset, and an accuracy of 81.72%, a Cohen’s kappa coefficient of 0.751 and a macro F1-score of 80.74% on the DREAMS Subjects dataset. The proposed AT-BiLSTM network even achieved a higher accuracy than the existing methods based on traditional feature extraction. Moreover, better performance was obtained by the AT-BiLSTM network with the frontal EEG derivations than with EEG channels located at the central, occipital or parietal lobe. As EEG signal can be easily acquired using dry electrodes on the forehead, our findings might provide a promising solution for automatic sleep scoring without feature extraction and may prove very useful for the screening of sleep disorders.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e16605-e16605
Author(s):  
Choongheon Yoon ◽  
Jasper Van ◽  
Michelle Bardis ◽  
Param Bhatter ◽  
Alexander Ushinsky ◽  
...  

e16605 Background: Prostate Cancer is the most commonly diagnosed male cancer in the U.S. Multiparametric magnetic resonance imaging (mpMRI) is increasingly used for both prostate cancer evaluation and biopsy guidance. The PI-RADS v2 scoring paradigm was developed to stratify prostate lesions on MRI and to predict lesion grade. Prostate organ and lesion segmentation is an essential step in pre-biopsy surgical planning. Deep learning convolutional neural networks (CNN) for image recognition are becoming a more common method of machine learning. In this study, we develop a comprehensive deep learning pipeline of 3D/2D CNN based on U-Net architecture for automatic localization and segmentation of prostates, detection of prostate lesions and PI-RADS v2 lesion scoring of mpMRIs. Methods: This IRB approved retrospective review included a total of 303 prostate nodules from 217 patients who had a prostate mpMRI between September 2014 and December 2016 and an MR-guided transrectal biopsy. For each T2 weighted image, a board-certified abdominal radiologist manually segmented the prostate and each prostate lesion. The T2 weighted and ADC series were co-registered and each lesion was assigned an overall PI-RADS score, T2 weighted PI-RADS score, and ADC PI-RADS score. After a U-Net neural network segmented the prostate organ, a mask regional convolutional neural network (R-CNN) was applied. The mask R-CNN is composed of three neural networks: feature pyramid network, region proposal network, and head network. The mask R-CNN detected the prostate lesion, segmented it, and estimated its PI-RADS score. Instead, the mask R-CNN was implemented to regress along dimensions of the PI-RADS criteria. The mask R-CNN performance was assessed with AUC, Sørensen–Dice coefficient, and Cohen’s Kappa for PI-RADS scoring agreement. Results: The AUC for prostate nodule detection was 0.79. By varying detection thresholds, sensitivity/PPV were 0.94/.54 and 0.60/0.87 at either ends of the spectrum. For detected nodules, the segmentation Sørensen–Dice coefficient was 0.76 (0.72 – 0.80). Weighted Cohen’s Kappa for PI-RADS scoring agreement was 0.63, 0.71, and 0.51 for composite, T2 weighted, and ADC respectively. Conclusions: These results demonstrate the feasibility of implementing a comprehensive 3D/2D CNN-based deep learning pipeline for evaluation of prostate mpMRI. This method is highly accurate for organ segmentation. The results for lesion detection and categorization are modest; however, the PI-RADS v2 score accuracy is comparable to previously published human interobserver agreement.


SLEEP ◽  
2019 ◽  
Vol 42 (11) ◽  
Author(s):  
Linda Zhang ◽  
Daniel Fabbri ◽  
Raghu Upender ◽  
David Kent

Abstract Study Objectives Polysomnography (PSG) scoring is labor intensive and suffers from variability in inter- and intra-rater reliability. Automated PSG scoring has the potential to reduce the human labor costs and the variability inherent to this task. Deep learning is a form of machine learning that uses neural networks to recognize data patterns by inspecting many examples rather than by following explicit programming. Methods A sleep staging classifier trained using deep learning methods scored PSG data from the Sleep Heart Health Study (SHHS). The training set was composed of 42 560 hours of PSG data from 5213 patients. To capture higher-order data, spectrograms were generated from electroencephalography, electrooculography, and electromyography data and then passed to the neural network. A holdout set of 580 PSGs not included in the training set was used to assess model accuracy and discrimination via weighted F1-score, per-stage accuracy, and Cohen’s kappa (K). Results The optimal neural network model was composed of spectrograms in the input layer feeding into convolutional neural network layers and a long short-term memory layer to achieve a weighted F1-score of 0.87 and K = 0.82. Conclusions The deep learning sleep stage classifier demonstrates excellent accuracy and agreement with expert sleep stage scoring, outperforming human agreement on sleep staging. It achieves comparable or better F1-scores, accuracy, and Cohen’s kappa compared to literature for automated sleep stage scoring of PSG epochs. Accurate automated scoring of other PSG events may eventually allow for fully automated PSG scoring.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A100-A100
Author(s):  
Niranjan Sridhar ◽  
Atiyeh Ghoreyshi ◽  
Lance Myers ◽  
Zachary Owens

Abstract Introduction Heart rate is well-known to be modulated by sleep stages. If clinically useful sleep scoring can be performed using only cardiac rhythms, then existing medical and consumer-grade devices that can measure heart rate can enable low-cost sleep evaluations. Methods We trained a neural network which uses dilated convolutional blocks to learn both local and long range features of heart rate extracted from ECG R-wave timing to predict for every non-overlapping 30s epoch of the input the probabilities of the epoch being in one of four classes—wake, light sleep, deep sleep or REM. The largest probability is chosen as the network’s class prediction and used to form the hypnogram. We used the Sleep Heart Health Study (SHHS) and Multi-Ethnic Study of Atherosclerosis Study (MESA) and Physionet Computing in Cardiology (CinC) dataset (over 10000 nights) for training and evaluation. Then we deployed the algorithm on PPG based heart rate measured by a wrist-worn device worn by subjects in a free-living setting. Results On the held out test SHHS dataset (800 nights, 561 subjects), the overall 4-class staging accuracy was 77% and Cohen’s kappa was 0.66. On the CinC dataset (993 nights, 993 subjects), the overall 4 class accuracy was 72% and Cohen’s kappa was 0.55. The study on free-living subjects is underway and these novel results will be collated and presented upon completion. Conclusion We hope these results build more trust in automated heart rate based sleep staging and encourage further research into its clinical application in screening and diagnosis of sleep disorders. Low cost, high efficacy devices which can be used in longitudinal studies can lead to breakthroughs in clinical applications of sleep staging for early diagnosis of chronic conditions and novel treatment endpoints. Support (if any) We recently published the training/testing of the algorithm as well a population level analysis showing differences in predicted sleep stages between disease cohorts. The article was published in NPJ Digital Medicine in Aug 2020. The study on free living subjects is currently underway and these new results will be presented at the sleep conference. Preliminary results indicate high concordance with our published results.


Author(s):  
A John. ◽  
D. Praveen Dominic ◽  
M. Adimoolam ◽  
N. M. Balamurugan

Background:: Predictive analytics has a multiplicity of statistical schemes from predictive modelling, data mining, machine learning. It scrutinizes present and chronological data to make predictions about expectations or if not unexplained measures. Most predictive models are used for business analytics to overcome loses and profit gaining. Predictive analytics is used to exploit the pattern in old and historical data. Objective: People used to follow some strategies for predicting stock value to invest in the more profit-gaining stocks and those strategies to search the stock market prices which are incorporated in some intelligent methods and tools. Such strategies will increase the investor’s profits and also minimize their risks. So prediction plays a vital role in stock market gaining and is also a very intricate and challenging process. Method: The proposed optimized strategies are the Deep Neural Network with Stochastic Gradient for stock prediction. The Neural Network is trained using Back-propagation neural networks algorithm and stochastic gradient descent algorithm as optimal strategies. Results: The experiment is conducted for stock market price prediction using python language with the visual package. In this experiment RELIANCE.NS, TATAMOTORS.NS, and TATAGLOBAL.NS dataset are taken as input dataset and it is downloaded from National Stock Exchange site. The artificial neural network component including Deep Learning model is most effective for more than 100,000 data points to train this model. This proposed model is developed on daily prices of stock market price to understand how to build model with better performance than existing national exchange method.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


2021 ◽  
Vol 11 (6) ◽  
pp. 2723
Author(s):  
Fatih Uysal ◽  
Fırat Hardalaç ◽  
Ozan Peker ◽  
Tolga Tolunay ◽  
Nil Tokgöz

Fractures occur in the shoulder area, which has a wider range of motion than other joints in the body, for various reasons. To diagnose these fractures, data gathered from X-radiation (X-ray), magnetic resonance imaging (MRI), or computed tomography (CT) are used. This study aims to help physicians by classifying shoulder images taken from X-ray devices as fracture/non-fracture with artificial intelligence. For this purpose, the performances of 26 deep learning-based pre-trained models in the detection of shoulder fractures were evaluated on the musculoskeletal radiographs (MURA) dataset, and two ensemble learning models (EL1 and EL2) were developed. The pre-trained models used are ResNet, ResNeXt, DenseNet, VGG, Inception, MobileNet, and their spinal fully connected (Spinal FC) versions. In the EL1 and EL2 models developed using pre-trained models with the best performance, test accuracy was 0.8455, 0.8472, Cohen’s kappa was 0.6907, 0.6942 and the area that was related with fracture class under the receiver operating characteristic (ROC) curve (AUC) was 0.8862, 0.8695. As a result of 28 different classifications in total, the highest test accuracy and Cohen’s kappa values were obtained in the EL2 model, and the highest AUC value was obtained in the EL1 model.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6460
Author(s):  
Dae-Yeon Kim ◽  
Dong-Sik Choi ◽  
Jaeyun Kim ◽  
Sung Wan Chun ◽  
Hyo-Wook Gil ◽  
...  

In this study, we propose a personalized glucose prediction model using deep learning for hospitalized patients who experience Type-2 diabetes. We aim for our model to assist the medical personnel who check the blood glucose and control the amount of insulin doses. Herein, we employed a deep learning algorithm, especially a recurrent neural network (RNN), that consists of a sequence processing layer and a classification layer for the glucose prediction. We tested a simple RNN, gated recurrent unit (GRU), and long-short term memory (LSTM) and varied the architectures to determine the one with the best performance. For that, we collected data for a week using a continuous glucose monitoring device. Type-2 inpatients are usually experiencing bad health conditions and have a high variability of glucose level. However, there are few studies on the Type-2 glucose prediction model while many studies performed on Type-1 glucose prediction. This work has a contribution in that the proposed model exhibits a comparative performance to previous works on Type-1 patients. For 20 in-hospital patients, we achieved an average root mean squared error (RMSE) of 21.5 and an Mean absolute percentage error (MAPE) of 11.1%. The GRU with a single RNN layer and two dense layers was found to be sufficient to predict the glucose level. Moreover, to build a personalized model, at most, 50% of data are required for training.


Sign in / Sign up

Export Citation Format

Share Document