scholarly journals High-throughput transcriptomic analysis of human primary hepatocyte spheroids exposed to per- and polyfluoroalkyl substances (PFAS) as a platform for relative potency characterization

Author(s):  
A Rowan-Carroll ◽  
A Reardon ◽  
K Leingartner ◽  
R Gagné ◽  
A Williams ◽  
...  

Abstract Per- and poly-fluoroalkyl substances (PFAS) are widely found in the environment because of their extensive use and persistence. Although several PFAS are well studied, most lack toxicity data to inform human health hazard and risk assessment. This study focussed on four model PFAS: perfluorooctanoic acid (PFOA; 8 carbon), perfluorobutane sulfonate (PFBS; 4 carbon), perfluorooctane sulfonate (PFOS; 8 carbon), and perfluorodecane sulfonate (PFDS; 10 carbon). Human primary liver cell spheroids (pooled from 10 donors) were exposed to 10 concentrations of each PFAS and analyzed at four time-points. The approach aimed to: (1) identify gene expression changes mediated by the PFAS; (2) identify similarities in biological responses; (3) compare PFAS potency through benchmark concentration analysis; and (4) derive bioactivity exposure ratios (ratio of the concentration at which biological responses occur, relative to daily human exposure). All PFAS induced transcriptional changes in cholesterol biosynthesis and lipid metabolism pathways, and predicted PPARα activation. PFOS exhibited the most transcriptional activity and had a highly similar gene expression profile to PFDS. PFBS induced the least transcriptional changes and the highest benchmark concentration (i.e., was the least potent). The data indicate that these PFAS may have common molecular targets and toxicities, but that PFOS and PFDS are the most similar. The transcriptomic bioactivity exposure ratios derived here for PFOA and PFOS were comparable to those derived using rodent apical endpoints in risk assessments. These data provide a baseline level of toxicity for comparison with other known PFAS using this testing strategy.

2020 ◽  
Author(s):  
A. Rowan-Carroll ◽  
A. Reardon ◽  
K. Leingartner ◽  
R. Gagné ◽  
A. Williams ◽  
...  

AbstractPer- and poly-fluoroalkyl substances (PFAS) are widely found in the environment because of their extensive use and persistence. Although a few PFAS are well studied, most lack toxicity data to inform human health hazard and risk assessment. This study focussed on four model PFAS: perfluorooctanoic acid (PFOA; 8 carbon), perfluorobutane sulfonate (PFBS; 4 carbon), perfluorooctane sulfonate (PFOS; 8 carbon), and perfluorodecane sulfonate (PFDS; 10 carbon). Human primary liver cell spheroids (i.e., pooled-donor) were exposed to 10 concentrations of PFAS over four time-points. The approach aimed to: (1) identify the extent to which the PFAS modulated gene expression; (2) identify similarities in biological responses; (3) compare PFAS potency through benchmark concentration (BMC) analysis; and (4) derive bioactivity exposure ratios (BERs: ratio of concentration at which biological response occurs converted to administered equivalent dose relative to human daily exposure). All PFAS induced transcriptional changes of cholesterol biosynthesis and lipid metabolism, and appeared to activate PPARα. PFOS exhibited the most transcriptional perturbations and had a highly similar gene expression profile to PFDS. PFBS induced the least transcriptional changes and had the highest BMCs. The data indicate that these four chemicals may have common molecular targets and toxicities, but that PFOS and PFDS are the most similar. BERs derived for PFOA and PFOS had relatively low margins; the transcriptomic BER was slightly more conservative than BERs derived from rodent apical endpoints used as points of departure in risk assessment. The data provide a baseline on which to compare the toxicity of other PFAS using this testing strategy.


2015 ◽  
Vol 24 (23) ◽  
pp. 2822-2840 ◽  
Author(s):  
Lindolfo da Silva Meirelles ◽  
Tathiane Maistro Malta ◽  
Virgínia Mara de Deus Wagatsuma ◽  
Patrícia Viana Bonini Palma ◽  
Amélia Goes Araújo ◽  
...  

2006 ◽  
Vol 177 (5) ◽  
pp. 3074-3081 ◽  
Author(s):  
Mi-Yeon Kim ◽  
Kai-Michael Toellner ◽  
Andrea White ◽  
Fiona M. McConnell ◽  
Fabrina M. C. Gaspal ◽  
...  

2019 ◽  
Vol 78 (7) ◽  
pp. 929-933 ◽  
Author(s):  
Charlie Bridgewood ◽  
Abdulla Watad ◽  
Tobias Russell ◽  
Timothy M Palmer ◽  
Helena Marzo-Ortega ◽  
...  

ObjectiveWe investigated whether the normal human spinal enthesis contained resident myeloid cell populations, capable of producing pivotal proinflammatory cytokines including tumour necrosis factor (TNF) and interleukin (IL)-23 and determined whether these could be modified by PDE4 inhibition.MethodsNormal human enthesis soft tissue (ST) and adjacent perientheseal bone (PEB) (n=15) were evaluated using immunohistochemistry (IHC), digested for myeloid cell phenotyping, sorted and stimulated with different adjuvants (lipopolysaccharide and mannan). Stimulated enthesis fractions were analysed for inducible production of spondyloarthropathy disease-relevant mediators (IL-23 full protein, TNF, IL-1β and CCL20). Myeloid populations were also compared with matched blood populations for further mRNA analysis and the effect of PDE4 inhibition was assessed.ResultsA myeloid cell population (CD45+ HLADR+ CD14+ CD11c+) phenotype was isolated from both the ST and adjacent PEB and termed ‘CD14+ myeloid cells’ with tissue localisation confirmed by CD14+ IHC. The CD14− fraction contained a CD123+ HLADR+ CD11c− cell population (plasmacytoid dendritic cells). The CD14+ population was the dominant entheseal producer of IL-23, IL-1β, TNF and CCL20. IL-23 and TNF from the CD14+ population could be downregulated by a PDE4I and other agents (histamine and 8-Bromo-cAMP) which elevate cAMP. Entheseal CD14+ cells had a broadly similar gene expression profile to the corresponding CD14+ population from matched blood but showed significantly lower CCR2 gene expression.ConclusionsThe human enthesis contains a CD14+ myeloid population that produces most of the inducible IL-23, IL-1β, TNF and CCL20. This population has similar gene expression profile to the matched blood CD14+ population.


2005 ◽  
Vol 36 (4) ◽  
pp. 341-347 ◽  
Author(s):  
Rajesh Kannangai ◽  
Anna Mae Diehl ◽  
Jason Sicklick ◽  
Marcus Rojkind ◽  
David Thomas ◽  
...  

2013 ◽  
Vol 210 (13) ◽  
pp. 2873-2886 ◽  
Author(s):  
Michael J. Cavnar ◽  
Shan Zeng ◽  
Teresa S. Kim ◽  
Eric C. Sorenson ◽  
Lee M. Ocuin ◽  
...  

Tumor-associated macrophages (TAMs) are a major component of the cancer microenvironment. Modulation of TAMs is under intense investigation because they are thought to be nearly always of the M2 subtype, which supports tumor growth. Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and typically results from an activating mutation in the KIT oncogene. Using a spontaneous mouse model of GIST and 57 freshly procured human GISTs, we discovered that TAMs displayed an M1-like phenotype and function at baseline. In both mice and humans, the KIT oncoprotein inhibitor imatinib polarized TAMs to become M2-like, a process which involved TAM interaction with apoptotic tumor cells leading to the induction of CCAAT/enhancer binding protein (C/EBP) transcription factors. In human GISTs that eventually developed resistance to imatinib, TAMs reverted to an M1-like phenotype and had a similar gene expression profile as TAMs from untreated human GISTs. Therefore, TAM polarization depends on tumor cell oncogene activity and has important implications for immunotherapeutic strategies in human cancers.


2021 ◽  
pp. 112334
Author(s):  
Serena Santonicola ◽  
Stefania Albrizio ◽  
Maria Carmela Ferrante ◽  
Mercogliano Raffaelina

2021 ◽  
Vol 22 (2) ◽  
pp. 522
Author(s):  
Noreen Falak ◽  
Qari Muhammad Imran ◽  
Adil Hussain ◽  
Byung-Wook Yun

Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaona Acharjee ◽  
Paul M. K. Gordon ◽  
Benjamin H. Lee ◽  
Justin Read ◽  
Matthew L. Workentine ◽  
...  

AbstractMicroglia play an important role in the pathogenesis of multiple sclerosis and the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). To more fully understand the role of microglia in EAE we characterized microglial transcriptomes before the onset of motor symptoms (pre-onset) and during symptomatic EAE. We compared the transcriptome in brain, where behavioral changes are initiated, and spinal cord, where damage is revealed as motor and sensory deficits. We used a RiboTag strategy to characterize ribosome-bound mRNA only in microglia without incurring possible transcriptional changes after cell isolation. Brain and spinal cord samples clustered separately at both stages of EAE, indicating regional heterogeneity. Differences in gene expression were observed in the brain and spinal cord of pre-onset and symptomatic animals with most profound effects in the spinal cord of symptomatic animals. Canonical pathway analysis revealed changes in neuroinflammatory pathways, immune functions and enhanced cell division in both pre-onset and symptomatic brain and spinal cord. We also observed a continuum of many pathways at pre-onset stage that continue into the symptomatic stage of EAE. Our results provide additional evidence of regional and temporal heterogeneity in microglial gene expression patterns that may help in understanding mechanisms underlying various symptomology in MS.


Sign in / Sign up

Export Citation Format

Share Document