scholarly journals Effects of Perfluoroalkyl Compounds on mRNA Expression Levels of Thyroid Hormone-Responsive Genes in Primary Cultures of Avian Neuronal Cells

2011 ◽  
Vol 120 (2) ◽  
pp. 392-402 ◽  
Author(s):  
Viengtha Vongphachan ◽  
Cristina G. Cassone ◽  
Dongmei Wu ◽  
Suzanne Chiu ◽  
Doug Crump ◽  
...  
2017 ◽  
Author(s):  
Jingxin Song

AbstractPrevious studies show that TDCPP may interrupt the thyroid endocrine system, however, the potential mechanisms involved in these processes were largely unknown. In this study, zebrafish embryos/larvae were exposed to TDCPP until 120 hpf, by which time most of the organs of the larvae have completed development. In this study, the effects of TDCPP on HPT axis were examined and the thyroid hormone levels were measured after TDCPP treatment. Zebrafish (Danio rerio) embryos were treated with a series concentration of TDCPP (10, 20, 40, 80, 160 and 320 μg/L) from 1 day post-fertilization (dpf) to 5 dpf. Exposure concentrations of TDCPP were determined based on the survival rates in each group. Total mRNA were isolated, first-strand cDNA were synthesis and qPCR were performed to detect the mRNA expression levels in hypothalamic-pituitary-thyroid (HPT) axis. The mRNA expression levels of genes involved in thyroid hormone homeostasis were increased in the TDCPP-treated larvae. The mRNA levels of genes involved in thyroid hormone synthesis were also increased in the embryos treated with TDCPP. Furthermore, exposure to TDCPP led to a dose-dependent effect on zebrafish development, including diminished hatching and survival rates, increased malformation. TDCPP treatment significantly reduced the T4 concentration in the 5 dpf zebrafish larvae, but increased the concentration of T3, suggesting the function of thyroid endocrine were interrupted in the TDCPP-exposed zebrafish. Taken together, these data indicated that TDCPP affected the thyroid hormone levels in the zebrafish larvae and could increased the mRNA expression levels of genes related to HPT axis, which further impaired the endocrine homeostasis and thyroid system.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Hu ◽  
Xiaoqian Shang ◽  
Liang Wang ◽  
Jiahui Fan ◽  
Yue Wang ◽  
...  

Abstract Aim Brucellar spondylitis (BS) is one of the most serious complications of brucellosis. CXCR3 is closely related to the severity of disease infection. This research aimed to study the degree of BS inflammatory damage through analyzing the expression levels of CXCR3 and its ligands (CXCL9 and CXCL10) in patients with BS. Methods A total of 29 BS patients and 15 healthy controls were enrolled. Real-Time PCR was used to detect the mRNA expression levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood mononuclear cells (PBMCs) of BS patients and healthy controls. Hematoxylin-Eosin staining was used to show the pathological changes in BS lesion tissues. Immunohistochemistry staining was used to show the protein expression levels of Brucella-Ab, IFN-γ, CXCR3, CXCL9 and CXCL10 in BS lesion tissues. At the same time, ELISA was used to detect the serum levels of IFN-γ, CXCL9 CXCL10 and autoantibodies against CXCR3 in patients with BS. Results In lesion tissue of BS patients, it showed necrosis of cartilage, acute or chronic inflammatory infiltration. Brucella-Ab protein was abundantly expressed in close lesion tissue. And the protein expression levels of IFN-γ, CXCR3 and CXCL10 were highly expressed in close lesion tissue and serum of BS patients. At the same time, the mRNA expression levels of IFN-γ, CXCR3 and CXCL10 in PBMCs of BS patients were significantly higher than those in controls. Conclusion In our research, the expression levels of IFN-γ, CXCR3 and its ligands were significantly higher than those in controls. It suggested that high expression levels of IFN-γ, CXCR3 and its ligands indicated a serious inflammatory damage in patients with BS.


2021 ◽  
Vol 746 ◽  
pp. 135669
Author(s):  
Shuguang Gu ◽  
Fengwei Cui ◽  
Jiajun Yin ◽  
Chunxia Fang ◽  
Liang Liu

2007 ◽  
Vol 16 (4-5) ◽  
pp. 171-177
Author(s):  
Adrian Lozada ◽  
Kaj Karlstedt ◽  
Pertti Panula ◽  
Antti A. Aarnisalo

In the auditory periphery, GDNF has been shown to have a trophic effect to spiral ganglion neurons, both during development and in adult animals. We have studied the effect of unilateral labyrinthectomy (UL) on protein levels and expression of GDNF multicomponent receptor complex: the ret tyrosine kinase and coreceptor GFRα-1 in the medial vestibular nucleus of the adult rat. GFRα-1 protein levels display an increasing trend in ipsilateral medial vestibular nucleus culminating at 48 h post UL. On the other hand, GFRα-1 mRNA expression levels in ipsi- and contralateral medial vestibular nucleus show a steadily decreasing trend that is significant at 1 week post-lesion. Protein levels for c-Ret isoforms also show an initial bilateral decreasing trend that ceases at 48 h in ipsilateral medial vestibular nucleus but persists on the contralateral side. c-Ret mRNA expression levels show a significant decrease at 4 h post UL followed by another significant decrease 1 week post UL. Our data would suggest that neurotrophins belonging to the GDNF family are involved in this model of post-lesional CNS plasticity.


Sign in / Sign up

Export Citation Format

Share Document