Induction of Gamma-Glutamyltransferase Activity and Consequent Pro-oxidant Reactions in Human Macrophages Exposed to Crocidolite Asbestos

2019 ◽  
Vol 177 (2) ◽  
pp. 476-482 ◽  
Author(s):  
Alessandro Corti ◽  
Justine Bonetti ◽  
Silvia Dominici ◽  
Simona Piaggi ◽  
Vanna Fierabracci ◽  
...  

Abstract Asbestos is the main causative agent of malignant pleural mesothelioma. The variety known as crocidolite (blue asbestos) owns the highest pathogenic potential, due to the dimensions of its fibers as well as to its content of iron. The latter can in fact react with macrophage-derived hydrogen peroxide in the so called Fenton reaction, giving rise to highly reactive and mutagenic hydroxyl radical. On the other hand, hydroxyl radical can as well originate after thiol-dependent reduction of iron, a process capable of starting its redox cycling. Previous studies showed that glutathione (GSH) is one such thiol, and that cellular gamma-glutamyltransferase (GGT) can efficiently potentiate GSH-dependent iron redox cycling and consequent oxidative stress. As GGT is expressed in macrophages and is released upon their activation, the present study was aimed at verifying the hypothesis that GSH/GGT-dependent redox reactions may participate in the oxidative stress following the activation of macrophages induced by crocidolite asbestos. Experiments in acellular systems confirmed that GGT-mediated metabolism of GSH can potentiate crocidolite-dependent production of superoxide anion, through the production of highly reactive dipeptide thiol cysteinyl-glycine. Cultured THP-1 macrophagic cells, as well as isolated monocytes obtained from healthy donors and differentiated to macrophages in vitro, were investigated as to their expression of GGT and the effects of exposure to crocidolite. The results show that crocidolite asbestos at subtoxic concentrations (50–250 ng/1000 cells) can upregulate GGT expression, which raises the possibility that macrophage-initiated, GSH/GGT-dependent pro-oxidant reactions may participate in the pathogenesis of tissue damage and inflammation consequent to crocidolite intoxication.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4712-4712 ◽  
Author(s):  
Deepika Sharma Das ◽  
Ze Tian ◽  
Arghya Ray ◽  
Durgadevi Ravillah ◽  
Yan Song ◽  
...  

Abstract Background and Rationale: Multiple Myeloma (MM) remains incurable despite the advent of novel drugs, highlighting the need for further identification of factors mediating disease progression and resistance. The bone marrow (BM) microenvironment confers growth, survival, and drug resistance in MM cells. Studies to date suggest an important role of BM hypoxia (low oxygenation) in MM cell survival, drug resistance, migration, and metastasis. Therapies targeting the MM cell in its BM milieu under hypoxic conditions may therefore achieve responses in patients resistant to various therapies. Recent studies led to the development of a novel aerospace-industry derived Phase 2 molecule RRx-001 with epigenetic and NO-donating properties. RRx-001 generates reactive oxygen and nitrogen species (RONS), which induces oxidative stress in tumor cells. Importantly, RRx-001 is also a potent vascular disrupting agent, which further provides rationale for utilizing RRx-001 as a therapeutic agent since tumor-associated angiogenesis is a characteristic of MM. A Phase I clinical trial has shown RRx-001 to have antitumor activity in heavily pretreated cancer patients and to be safe and well tolerated with no dose-limiting toxicities (Reid et al. J Clin Oncol 32:5s, 2014 suppl; abstr 2578). Here we examined the anti-MM activity of RRx-001 using in vitro and in vivo models of MM. Materials and methods: MM cell lines, patient MM cells, and peripheral blood mononuclear cells (PBMCs) from normal healthy donors were utilized to assess the anti-MM activity of RRx-001 alone or in combination with other agents. Drug sensitivity, cell viability, apoptosis, and migration assays were performed using WST, MTT, Annexin V staining, and transwell Inserts, respectively. Synergistic/additive anti-MM activity was assessed by isobologram analysisusing “CalcuSyn” software program. Signal transduction pathways were evaluated using immunoblotting. ROS release, nitric oxide generation, and mitochondrial membrane potential was measured as previously described (Chauhan et al., Blood, 2004, 104:2458). In vitro angiogenesis was assessed using matrigel capillary-like tube structure formation assays. DNMT1 activity was measured in protein lysates using EpiQuik DNMT1 assay kit. 5-methyl cytosine levels were analyzed in gDNA samples using methylflash methylated DNA quantification kit from Enzo life sciences; USA. For xenograft mouse model, CB-17 SCID-mice were subcutaneously inoculated with MM.1S cells as previously described (Chauhan et al., Blood, 2010, 115:834). Statistical significance of data was determined using a Student’st test. RRx-001 was obtained from RadioRx Inc., CA, USA; bortezomib, SAHA, and pomalidomide were purchased from Selleck chemicals, USA. Results: Treatment of MM cell lines (MM.1S, MM.1R, RPMI-8226, OPM2, H929, Dox-40 ARP-1, KMS-11, ANBL6.WT, ANBL6.BR, and LR5) and primary patient cells for 24h significantly decreased their viability (IC50 range 1.25nM to 2.5nM) (p < 0.001; n=3) without markedly affecting PBMCs from normal healthy donors, suggesting specific anti-MM activity and a favorable therapeutic index for RRx-001. Tumor cells from 3 of 5 patients were obtained from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. Moreover, RRx-001 inhibits proliferation of MM cells even in the presence of BM stromal cells. Mechanistic studies show that RRx-001-triggered apoptosis is associated with 1) induction of DNA damage response signaling via ATM/p53/gH2AX axis; 2) activation of caspases mediating both intrinsic and extrinsic apoptotic pathways; 3) increase in oxidative stress through release of ROS and generation of NO; and 4) decrease in DNA methyltransferase (DNMT1) enzymatic activity and global methylation levels. Furthermore, RRx-001 blocked migration of MM cells and angiogenesis. In vivo studies using subcutaneous human MM xenograft models show that RRx-001 is well tolerated and inhibits tumor growth. Finally, combining RRx-001 with bortezomib, SAHA, or pomalidomide induces synergistic anti-MM activity and overcomes drug resistance. Conclusion: Our preclinical studies showing efficacy of RRx-001 in MM disease models provide the framework for clinical trial of RRx-001, either alone or in combination, to improve outcome in relapsed and refractory MM patients. Disclosures Richardson: Oncopeptides AB: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Oronsky:RadioRx Inc, : Employment. Scicinski:RadioRx Inc,: Employment. Chauhan:Triphase Accelerator: Consultancy. Anderson:Celgene: Consultancy; Millenium: Consultancy; Onyx: Consultancy; Gilead: Consultancy; Sanofi Aventis: Consultancy; BMS: Consultancy; Oncopep/Acetylon: Equity Ownership.


2008 ◽  
Vol 7 (3) ◽  
pp. 38-43 ◽  
Author(s):  
N. Yu. Chasovskikh

Programmed cell death of peripheral blood mononuclear leucocytes taken from healthy donors and cultivated with various concentration of Н2О2, selective inhibitors of JNK (SP600125), 38 (ML3403) and in case of pneumonia was investigated. Intensification of intracellular production of reactive oxy р МАРК - gen species was accompanied by the increase in number of apoptotic and TNFR1-presented cells and mononuclears with reduced value of mitochondrial transmembrane potential in a case of oxidative stress induction with 1 mM hydrogen peroxide and in blood taken from patients with pneumonia. Action of inhibitors SP600125 and ML3403 in vitro in oxidative stress conditions prevents the increase in number of annexin- positive mononuclear cells, that confirms the participation of JNK and 38 -kinases in mechanisms of oxidative stress-mediated apoptosis dysregulation.


2016 ◽  
Vol 13 (2) ◽  
pp. 407-413
Author(s):  
Baghdad Science Journal

The oxidative stress is result of unbalancing between oxidants and antioxidants in the body. Hypertension (HT) is a measure of average systolic blood pressure which created by the heart contracting, greater ?140 mmHg or an average diastolic blood pressure, which is the heart fills, of ?equal to 90 mmHg. The study is conducted on 28 female patients with HT from Ibn Al-nafese hospital in addition to 28 female control. The markers measured are albumin, malondialdehyde (MDA) and 8-Hydroxy deoxyguanosine (8-OHdG). Also electrophoresis study on extracted DNA with Fenton reaction was done. Results of this study show there are high significant decrease (p?0.01) in albumin concentration of patient related to control, and there is a high significant increase (p? 0.01) in each MDA and 8-OHdG for patients group in comparison with controls. The Fenton reaction done shows that oxidant has degradation effect on DNA either in two minutes of reaction. It is concluded that oxidative stress in its parameter (albumin) and markers (MDA and 8-OHdG) is main chemical manifestation of group under study. And oxidants produced by Fenton can denature the DNA in vitro.


2009 ◽  
Vol 53 (4) ◽  
pp. 1395-1402 ◽  
Author(s):  
Xiuhong Wang ◽  
Xilin Zhao

ABSTRACT A potential pathway linking hydroxyl radicals to antimicrobial lethality was examined by using mutational and chemical perturbations of Escherichia coli. Deficiencies of sodA or sodB had no effect on norfloxacin lethality; however, the absence of both genes together reduced lethal activity, consistent with rapid conversion of excessive superoxide to hydrogen peroxide contributing to quinolone lethality. Norfloxacin was more lethal with a mutant deficient in katG than with its isogenic parent, suggesting that detoxification of peroxide to water normally reduces quinolone lethality. An iron chelator (bipyridyl) and a hydroxyl radical scavenger (thiourea) reduced the lethal activity of norfloxacin, indicating that norfloxacin-stimulated accumulation of peroxide affects lethal activity via hydroxyl radicals generated through the Fenton reaction. Ampicillin and kanamycin, antibacterials unrelated to fluoroquinolones, displayed behavior similar to that of norfloxacin except that these two agents showed hyperlethality with an ahpC (alkyl hydroperoxide reductase) mutant rather than with a katG mutant. Collectively, these data are consistent with antimicrobial stress increasing the production of superoxide, which then undergoes dismutation to peroxide, from which a highly toxic hydroxyl radical is generated. Hydroxyl radicals then enhance antimicrobial lethality, as suggested by earlier work. Such findings indicate that oxidative stress networks may provide targets for antimicrobial potentiation.


2011 ◽  
Vol 51 ◽  
pp. S128
Author(s):  
Maicon Roberto Kviecinski ◽  
Julien Verrax ◽  
Karina Bettega Felipe ◽  
Mirelle S. Farias ◽  
Reginaldo Geremias ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1786-1786
Author(s):  
Brianna Craver ◽  
Gajalakshmi Ramanathan ◽  
Laura Mendez Luque ◽  
Summer Hoang ◽  
Kenza Elalaoui ◽  
...  

Abstract Chronic inflammation is common in MPN and drives disease progression and worsens symptom burden. It has been reported that JAK2V617F hematopoietic stem and progenitor cells (HSPCs) exhibit elevated basal oxidative stress compared to wild-type cells. However, JAK2V617F HSCs have a differential response than normal HSPCs upon stimulation with pro-inflammatory cytokines or lipopolysaccharide (LPS) invivo and in vitro. Specifically, JAK2V617F HSPCs do not significantly increase reactive oxygen species, exit quiescence, or increase DNA damage following LPS exposure (Blood 2017 130:4211). Therefore, we hypothesized that oxidative stress is important for differential responses of wild-type and JAK2V617F HSCs to inflammation. To compare cell responses to oxidative stress, we treated bone marrow cells from JAK2V617F knock-in and wild-type mice ex vivo with L-buthionine-S,R-sulfoximine (BSO), which reduces glutathione levels, then measured the impact on myeloid colony formation in methylcellulose. JAK2V617F knock-in bone marrow cells are resistant to oxidative stress-induced reduction in colony formation compared to wild-type bone marrow cells. This data suggests that JAK2V617F myeloid progenitors produce less reactive oxygen species in response to BSO or that these cells are resistant to oxidative stress-induced cell death. Next, we tested the effect of the anti-oxidant n-acetylcysteine (NAC) in a JAK2V617F knock-in mouse model. All hematopoietic cells in this model express JAK2V617F, these mice develop elevated blood counts, splenomegaly, and die suddenly at approximately 2-3 months of age. Surprisingly, addition of NAC (2g/L) in the drinking water extended the lifespan of JAK2V617F-knock in mice (p<0.02, n=6-12). However, aspirin (16mg/L) in drinking water did not extend the lifespan of JAK2V617F-knock in mice. NAC did not alter peripheral blood counts in either JAK2V617F-knock in or wild-type mice, which suggests that NAC's utility in JAK2V617F is not through cytoreduction but is due to its ability to reduce oxidative stress or thrombosis. Additionally, NAC had no effect on thrombin-induced platelet activation, which was assayed by P-selectin expression, phosphatidylserine exposure, and platelet-leukocyte aggregation via flow cytometry. There is a positive correlation between leukocytosis and thrombotic risk in MPN patients. Additionally, MPN patients and mice exhibit elevated neutrophil extracellular trap (NET) formation compared to healthy controls, which contributes to the increased thrombosis in MPN. To test the effect of antioxidants on NET formation in vitro, we treated neutrophils from MPN patients or healthy donors with phorbol myristate acetate concurrently with antioxidants (NAC or ferulic acid) and assayed the presence of extracellular DNA using a SYTOX Green nucleic acid stain. Unstimulated neutrophils from MPN patients exhibited sporadic NET formation while neutrophils from healthy donors did not. Additionally, NAC and ferulic acid reduced DNA release, which is indicative of NET formation. Taken together, these data demonstrate that JAK2V617F progenitors are resistant to oxidative stress-induced cell death. Furthermore, reduction of oxidative stress with n-acetylcysteine in vivo prevented NET-induced thrombosis in JAK2V617F knock-in mice as well as in vitro in normal and MPN neutrophils. These data provide a rationale for investigating the utility of n-acetylcysteine as a therapeutic in myeloproliferative neoplasms. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document