scholarly journals Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens)

2000 ◽  
Vol 20 (1) ◽  
pp. 57-63 ◽  
Author(s):  
M. E. Day
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501c-501
Author(s):  
Andrés A. Estrada-Luna ◽  
Jonathan N. Egilla ◽  
Fred T. Davies

The effect of mycorrhizal fungi on gas exchange of micropropagated guava plantlets (Psidium guajava L.) during acclimatization and plant establishment was determined. Guava plantlets (Psidium guajava L. cv. `Media China') were asexually propagated through tissue culture and acclimatized in a glasshouse for eighteen weeks. Half of the plantlets were inoculated with ZAC-19, which is a mixed isolate containing Glomus etunicatum and an unknown Glomus spp. Plantlets were fertilized with modified Long Ashton nutrient solution containing 11 (g P/ml. Gas exchange measurements included photosynthetic rate (A), stomatal conductance (gs), internal CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and vapor pressure deficit (VPD). Measurements were taken at 2, 4, 8 and 18 weeks after inoculation using a LI-6200 portable photosynthesis system (LI-COR Inc. Lincoln, Neb., USA). Two weeks after inoculation, noninoculated plantlets had greater A compared to mycorrhizal plantlets. However, 4 and 8 weeks after inoculation, mycorrhizal plantlets had greater A, gs, Ci and WUE. At the end of the experiment gas exchange was comparable between noninoculated and mycorrhizal plantlets.


2014 ◽  
Vol 522-524 ◽  
pp. 1055-1058
Author(s):  
Jing Li ◽  
Xiao Guang Wang ◽  
Gui Zhai Zhang ◽  
Xue Wei Hou ◽  
Xiao Ming Li

Response of gas exchange to VPD in leaves of four trees (Prunus serrulata, Prunus lannesiana, Populus deltoides I-69 (I-69) and Populus × euramericana Neva (I-107)) at the campus of Shandong University in Jinan, Shandong Province were measured. The result showed that: the stomatal conductance increased with increasing VPD, and gs reached gs-max at intermediate VPD, and a steady decline in gs with further increases in VPD. This response pattern was fitted by a parabolic curve (gs=aD2+bD+c, D=VPD, R2>0.52). The gs-max at intermediate VPD with changing VPD showed that there was an optimal VPD (or RH) to plants. Therefore, while VPD (or RH) was higher or lower than the optimal VPD (or RH) of plant, gs would decrease. The response of gs to VPD in I-69 and I-107 were much more sensitive than P. serrulata and P. lannesiana.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1448-1456 ◽  
Author(s):  
Anthony V. LeBude ◽  
Barry Goldfarb ◽  
Frank A. Blazich ◽  
John Frampton ◽  
Farrell C. Wise

Two experiments were conducted during which juvenile hardwood or softwood stem cuttings of loblolly pine (Pinus taeda L.) were rooted under six mist regimes in a polyethylene-covered greenhouse to investigate the effect of mist level on vapor pressure deficit (VPD) and cutting water potential (Ψcut), and to determine the relationships between these variables and rooting percentage. In addition, net photosynthesis at ambient conditions (Aambient) and stomatal conductance (gs) were measured in stem cuttings during adventitious root formation to determine their relationship to rooting percentage. Hardwood stem cuttings rooted ≥80% when mean daily VPD between 1000 and 1800 hr ranged from 0.60 to 0.85 kPa. Although rooting percentage was related to Ψcut, and Aambient was related to Ψcut, rooting percentage of softwood stem cuttings was not related to Aambient of stem cuttings. Using VPD as a control mechanism for mist application during adventitious rooting of stem cuttings of loblolly pine might increase rooting percentages across a variety of rooting environments.


Sign in / Sign up

Export Citation Format

Share Document