Response of leaf water potential, stomatal conductance and chlorophyll content under different levels of soil water, air vapor pressure deficit and solar radiation in chili pepper (Capsicum chinense)

2021 ◽  
Vol 281 ◽  
pp. 109943
Author(s):  
Keita Goto ◽  
Shin Yabuta ◽  
Peter Ssenyonga ◽  
Shotaro Tamaru ◽  
Jun-Ichi Sakagami
2013 ◽  
Vol 27 (3) ◽  
pp. 351-357 ◽  
Author(s):  
A. Pérez-Vázquez ◽  
G. Hernández-Salinas ◽  
C. Ávila-Reséndiz ◽  
O.A. Valdés-Rodríguez ◽  
F. Gallardo-López ◽  
...  

Abstract The purpose of this study was to evaluate growth, chlorophyll content, and photosynthesis in Jatropha at different levels of soil moisture. Plants were cultivated in containers and the treatments of the soil water content evaluated were: 0% (without watering), 20, 40, 60, and 80% soil water content. Plant height was statistically similar for all treatments, but the number of leaves differed significantly. Total dry matter and chlorophyll at 40, 60, and 80% soil water content were statistically similar, but different from 0 and 20% soil water content. Leaf area at 40, 60, and 80% soil water content was statistically different from 0 and 20% soil water content. The photosynthetic rate, transpiration and stomatal conductance at 60 and 80% soil water content were statistically similar but different from 0 and 20% soil water content. Water stress affected growth, chlorophyll content, photosynthetic rate, transpiration, and stomatal conductance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Victor L. Barradas ◽  
Manuel Esperon-Rodriguez

Urban forests play an important role in regulating urban climate while providing multiple environmental services. These forests, however, are threatened by changes in climate, as plants are exposed not only to global climate change but also to urban climate, having an impact on physiological functions. Here, we selected two physiological variables (stomatal conductance and leaf water potential) and four environmental variables (air temperature, photosynthetically active radiation, vapor pressure deficit, and water availability) to compare and evaluate the ecophysiological vulnerability to climate change of 15 dominant tree species from Mexico City’s urban forest. The stomatal conductance response was evaluated using the boundary-line analysis, which allowed us to compare the stomatal response to changes in the environment among species. Our results showed differential species responses to the environmental variables and identified Buddleja cordata and Populus deltoides as the least and most vulnerable species, respectively. Air temperatures above 33°C and vapor pressure deficit above 3.5 kPa limited the stomatal function of all species. Stomatal conductance was more sensitive to changes in leaf water potential, followed by vapor pressure deficit, indicating that water is a key factor for tree species performance in Mexico City’s urban forest. Our findings can help to optimize species selection considering future climate change by identifying vulnerable and resilient species.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501c-501
Author(s):  
Andrés A. Estrada-Luna ◽  
Jonathan N. Egilla ◽  
Fred T. Davies

The effect of mycorrhizal fungi on gas exchange of micropropagated guava plantlets (Psidium guajava L.) during acclimatization and plant establishment was determined. Guava plantlets (Psidium guajava L. cv. `Media China') were asexually propagated through tissue culture and acclimatized in a glasshouse for eighteen weeks. Half of the plantlets were inoculated with ZAC-19, which is a mixed isolate containing Glomus etunicatum and an unknown Glomus spp. Plantlets were fertilized with modified Long Ashton nutrient solution containing 11 (g P/ml. Gas exchange measurements included photosynthetic rate (A), stomatal conductance (gs), internal CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and vapor pressure deficit (VPD). Measurements were taken at 2, 4, 8 and 18 weeks after inoculation using a LI-6200 portable photosynthesis system (LI-COR Inc. Lincoln, Neb., USA). Two weeks after inoculation, noninoculated plantlets had greater A compared to mycorrhizal plantlets. However, 4 and 8 weeks after inoculation, mycorrhizal plantlets had greater A, gs, Ci and WUE. At the end of the experiment gas exchange was comparable between noninoculated and mycorrhizal plantlets.


2012 ◽  
Vol 39 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Maria Balota ◽  
Steve McGrath ◽  
Thomas G. Isleib ◽  
Shyam Tallury

Abstract Water deficit, i.e., rainfall amounts and distribution, is the most common abiotic stress that limits peanut production worldwide. Even though extensive research efforts have been made to improve drought tolerance in peanut, performance of genotypes largely depends upon the environment in which they grow. Based on greenhouse experiments, it has been hypothesized that stomata closure under high vapor pressure deficit (VPD) is a mechanism of soil water conservation and it has been shown that genotypic variation for the response of transpiration rate to VPD in peanut exists. The objective of this study was to determine the relationship between stomatal conductance (gs) and VPD for field grown peanut in Virginia-Carolina (VC) rainfed environments. In 2009, thirty virginia-type peanut cultivars and advanced breeding lines were evaluated for gs at several times before and after rain events, including a moisture stress episode. In 2010, eighteen genotypes were evaluated for gs under soil water deficit. In 2009, VPD ranged from 1.3 to 4.2 kPa and in 2010 from 1.78 to 3.57 kPa. Under water deficit, genotype and year showed a significant effect on gs (P  =  0.0001), but the genotype × year interaction did not. During the water deficit episodes while recorded gs values were relatively high, gs was negatively related to VPD (R2  =  0.57, n  =  180 in 2009; R2  =  0.47, n  =  108 in 2010), suggesting that stomata closure is indeed a water conservation mechanism for field grown peanut. However, a wide range of slopes among genotype were observed in both years. Genotypes with significant negative relationships of gs and VPD under water deficit in both years were Florida Fancy, Gregory, N04074FCT, NC-V11, and VA-98R. While Florida Fancy, Gregory, and NC-V11 are known to be high yielding cultivars, VA-98R and line N04074FCT are not. The benefit of stomatal closure during drought episodes in the VC environments is further discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document