scholarly journals Further insights into the components of resistance to Ophiostoma novo-ulmi in Ulmus minor: hydraulic conductance, stomatal sensitivity and bark dehydration

2017 ◽  
Vol 38 (2) ◽  
pp. 252-262 ◽  
Author(s):  
Pilar Pita ◽  
Jesús Rodríguez-Calcerrada ◽  
David Medel ◽  
Luis Gil
2001 ◽  
Vol 28 (8) ◽  
pp. 765 ◽  
Author(s):  
Krõõt Aasamaa ◽  
Anu Sõber ◽  
Märt Rahi

Some anatomical characteristics in leaves relating to hydraulic conductance and stomatal conductance were examined in six temperate deciduous tree species. The fourth power of the radius of the conducting elements in xylem (r4) and the area of mesophyll and epidermal cells per unit length of leaf cross-section (u) were high in leaves with high hydraulic conductance (L). Stomatal conductance (gs) and stomatal sensitivity to an increase in leaf water potential (si) correlated positively with the length of stomatal pore (l), but negatively with the guard cell width (z) and the length of the dorsal side of the guard cells (ld). Stomatal sensitivity to a decrease in leaf water potential (sd) correlated negatively with l and positively with z and ld. The anatomical characteristics associated with hydraulic conductance (r4 and u) and those associated with stomatal conductance and sensitivity to changes of leaf water potential (l, z and ld) were correlated. We conclude that hydraulic conductance may depend on anatomical characteristics of xylem, mesophyll and epidermis, and stomatal conductance and its sensitivity to changing water potential may depend on anatomical characteristics of stomata. The correlation of shoot hydraulic conductance with stomatal conductance and its sensitivity may be based largely on the correlation between the anatomical characteristics of the water conducting system and stomata in these trees.


2011 ◽  
Vol 19 (2) ◽  
pp. 456-461 ◽  
Author(s):  
Qi-Liang YANG ◽  
Fu-Cang ZHANG ◽  
Xiao-Gang LIU ◽  
Nan ZHANG ◽  
Zhen-Yang GE

2012 ◽  
pp. 483-489 ◽  
Author(s):  
S. Tombesi ◽  
J. Marsal ◽  
B. Basile ◽  
A. Weibel ◽  
L. Solari ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiangfeng Tan ◽  
Mengmeng Liu ◽  
Ning Du ◽  
Janusz J. Zwiazek

Abstract Background Root hypoxia has detrimental effects on physiological processes and growth in most plants. The effects of hypoxia can be partly alleviated by ethylene. However, the tolerance mechanisms contributing to the ethylene-mediated hypoxia tolerance in plants remain poorly understood. Results In this study, we examined the effects of root hypoxia and exogenous ethylene treatments on leaf gas exchange, root hydraulic conductance, and the expression levels of several aquaporins of the plasma membrane intrinsic protein group (PIP) in trembling aspen (Populus tremuloides) seedlings. Ethylene enhanced net photosynthetic rates, transpiration rates, and root hydraulic conductance in hypoxic plants. Of the two subgroups of PIPs (PIP1 and PIP2), the protein abundance of PIP2s and the transcript abundance of PIP2;4 and PIP2;5 were higher in ethylene-treated trembling aspen roots compared with non-treated roots under hypoxia. The increases in the expression levels of these aquaporins could potentially facilitate root water transport. The enhanced root water transport by ethylene was likely responsible for the increase in leaf gas exchange of the hypoxic plants. Conclusions Exogenous ethylene enhanced root water transport and the expression levels of PIP2;4 and PIP2;5 in hypoxic roots of trembling aspen. The results suggest that ethylene facilitates the aquaporin-mediated water transport in plants exposed to root hypoxia.


1997 ◽  
Vol 273 (3) ◽  
pp. H1408-H1414 ◽  
Author(s):  
R. H. Stewart ◽  
D. A. Rohn ◽  
S. J. Allen ◽  
G. A. Laine

Myocardial edema formation, which has been shown to compromise cardiac function, and increased epicardial transudation (pericardial effusion) have been shown to occur after elevation of myocardial venous and lymphatic outflow pressures. The purposes of this study were to estimate the hydraulic conductance and osmotic reflection coefficient for the epicardium and to determine the effect of coronary sinus hypertension and cardiac lymphatic obstruction on epicardial fluid flux (JV,e/Ae). A Plexiglas hemispheric capsule was attached to the left ventricular epicardial surface of anesthetized dogs. JV,e/Ae was determined over 30-min periods for three intracapsular pressures (-5, -15, and -25 mmHg) and two intracapsular solutions exerting colloid osmotic pressures of 7.0 and 2.0 mmHg. Hydraulic conductance was estimated to be 3.7 +/- 0.5 microliters.h-1.cm-2.mmHg-1. An osmotic reflection coefficient of 0.9 was calculated from the difference in JV,e/Ae of 16.5 +/- 8.4 microliters.h-1.cm-2 between the two solutions. Graded coronary sinus hypertension induced a linear increase in JV,e/Ae, which was significantly greater in dogs without cardiac lymphatic occlusion than in those with occlusion.


1999 ◽  
Vol 56 (8) ◽  
pp. 641-650 ◽  
Author(s):  
Michèle Trémolières ◽  
Annik Schnitzler ◽  
José-Miguel Sánchez-Pérez ◽  
Diane Schmitt

Sign in / Sign up

Export Citation Format

Share Document