scholarly journals Gut virome of mammals and birds reveals high genetic diversity of the family Microviridae

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Hao Wang ◽  
Yu Ling ◽  
Tongling Shan ◽  
Shixing Yang ◽  
Hui Xu ◽  
...  
Author(s):  
Haoran Wang ◽  
Hui Gao ◽  
Zhiwen Jiang ◽  
Leibo Shi ◽  
Pengwei Zhao ◽  
...  

The Pigeon circovirus (PiCV) containing a circular single stranded DNA (approximately 2 kb) genome belongs to the genus Circovirus of the family Circoviridae. PiCV infections in pigeons ( Columba livia) have been reported worldwide. Currently, pigeon racing is becoming increasingly popular and considered to be a national sport in China, and even, the greatest competitions of racing pigeons are taking place in China. However, there are still no epidemiologic data regarding PiCV infections among racing pigeons in China. To trace the prevalence, genetic variation and evolution of PiCV in sick and healthy racing pigeons, 622 samples were collected from 11 provinces or municipalities in China from 2016 to 2019. Samples were tested by polymerase chain reaction. The results showed that the positive rate of PiCV was 19.3% (120/622) at the sample level and 59.0% (23/39) at the club level, thus suggesting that the virus was prevalent in Chinese racing pigeons. A sequence analysis revealed that the cap genes of the PiCV strains identified in our study displayed a high genetic diversity and shared nucleotide homologies of 71.9%–100% and amino acid homologies of 71.7%–100%. 28 and 36 unique amino acid substitutions were observed in the Cap and Rep proteins derived from our PiCV strains, respectively. Furthermore, The ATT and GTG were highly suspected to be the start codons of the Cap protein. A cap-gene-based phylogenetic analysis showed that the strains in this study could be further divided into seven clades (A, B, C, E, G, H, and I) and some of them were closely related to worldwide strains from different types of pigeons. A large number of recombination events (31 events) were also detected in the PiCV genomes from Chinese racing pigeons. These findings indicate that PiCV strains circulating in China exhibit a high genetic diversity.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
José David Rangel-Medrano ◽  
Edna Judith Márquez

ABSTRACT The Neotropical freshwater catfish Pseudopimelodus atricaudus and Pseudopimelodus magnus are two recently discovered species endemic to the Colombian Magdalena-Cauca River basin. In this study, a set of 13 microsatellite loci were developed by using next generation sequence technology to assess the genetic diversity and population structure in P. atricaudus and test for cross-species amplification in P. magnus. Both species exhibited high genetic diversity (P. atricaudus: Na: 9.000 - 9.769 alleles/locus, Ho: 0.760 - 0.804, HE: 0.804 - 0.840; P. magnus: Na: 12.8 - 5.4 alleles/locus, Ho: 0.638 - 0.683, HE: 0.747 - 0.755) compared to the mean levels of genetic diversity reported for Neotropical Siluriformes, and lack of genetic differentiation among sampling sites within the Cauca River (P. atricaudus: F’ST=0.013 - 0.017, P > 0.05, D’est= -0.004 - 0.023, P > 0.05; P. magnus: F’ST= 0.031, P= 0.055; D’est= 0.045, P= 0.058). This work is the first insight on the diversity and the population genetics of species of the family Pseudopimelodidae and provides a framework to further population genetic and conservation analyses needed in this poorly studied family at the microevolutionary level.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 89
Author(s):  
Jiayu Li ◽  
Fuxian Yang ◽  
Ruobing Liang ◽  
Sheng Guo ◽  
Yaqiong Guo ◽  
...  

Cryptosporidiumfelis is an important cause of feline and human cryptosporidiosis. However, the transmission of this pathogen between humans and cats remains controversial, partially due to a lack of genetic characterization of isolates from cats. The present study was conducted to examine the genetic diversity of C. felis in cats in China and to assess their potential zoonotic transmission. A newly developed subtyping tool based on a sequence analysis of the 60-kDa glycoprotein (gp60) gene was employed to identify the subtypes of 30 cat-derived C. felis isolates from Guangdong and Shanghai. Altogether, 20 C. felis isolates were successfully subtyped. The results of the sequence alignment showed a high genetic diversity, with 13 novel subtypes and 2 known subtypes of the XIXa subtype family being identified. The known subtypes were previously detected in humans, while some of the subtypes formed well-supported subclusters with human-derived subtypes from other countries in a phylogenetic analysis of the gp60 sequences. The results of this study confirmed the high genetic diversity of the XIXa subtype family of C. felis. The common occurrence of this subtype family in both humans and cats suggests that there could be cross-species transmission of C. felis.


Author(s):  
Mohamed Abd. S. El zayat ◽  
Mahmoud El Sayd Ali ◽  
Mohamed Hamdy Amar

Abstract Background The Capparaceae family is commonly recognized as a caper, while Cleomaceae represents one of small flowering family within the order Brassicales. Earlier, Cleomaceae was included in the family Capparaceae; then, it was moved to a distinct family after DNA evidence. Variation in habits and a bewildering array of floral and fruit forms contributed to making Capparaceae a “trash-basket” family in which many unrelated plants were placed. Indeed, family Capparaceae and Cleomaceae are in clear need of more detailed systematic revision. Results Here, in the present study, the morphological characteristics and the ecological distribution as well as the genetic diversity analysis among the twelve species of both Capparaceae and Cleomaceae have been determined. The genetic analysis has been checked using 15 ISSR, 30 SRAP, and 18 ISTR to assess the systematic knots between the two families. In order to detect the molecular phylogeny, a comparative analysis of the three markers was performed based on the exposure of discriminating capacity, efficiency, and phylogenetic heatmap. Our results indicated that there is a morphological and ecological variation between the two families. Moreover, the molecular analysis confirmed that ISTR followed by SRAP markers has superior discriminating capacity for describing the genetic diversity and is able to simultaneously distinguish many polymorphic markers per reaction. Indeed, both the PCA and HCA data have drawn a successful annotation relationship in Capparaceae and Cleome species to evaluate whether the specific group sort individual or overlap groups. Conclusion The outcomes of the morphological and ecological characterization along with the genetic diversity indicated an insight solution thorny interspecies in Cleome and Gynandropsis genera as a distinct family (Cleomaceae) and the other genera (Capparis, Cadaba, Boscia, and Maerua) as Capparaceae. Finally, we recommended further studies to elucidate the systematic position of Dipterygium glaucum.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


2021 ◽  
Vol 9 (8) ◽  
pp. 1612
Author(s):  
Werner Ruppitsch ◽  
Andjela Nisic ◽  
Patrick Hyden ◽  
Adriana Cabal ◽  
Jasmin Sucher ◽  
...  

In many dairy products, Leuconostoc spp. is a natural part of non-starter lactic acid bacteria (NSLAB) accounting for flavor development. However, data on the genomic diversity of Leuconostoc spp. isolates obtained from cheese are still scarce. The focus of this study was the genomic characterization of Leuconostoc spp. obtained from different traditional Montenegrin brine cheeses with the aim to explore their diversity and provide genetic information as a basis for the selection of strains for future cheese production. In 2019, sixteen Leuconostoc spp. isolates were obtained from white brine cheeses from nine different producers located in three municipalities in the northern region of Montenegro. All isolates were identified as Ln. mesenteroides. Classical multilocus sequence tying (MLST) and core genome (cg) MLST revealed a high diversity of the Montenegrin Ln. mesenteroides cheese isolates. All isolates carried genes of the bacteriocin biosynthetic gene clusters, eight out of 16 strains carried the citCDEFG operon, 14 carried butA, and all 16 isolates carried alsS and ilv, genes involved in forming important aromas and flavor compounds. Safety evaluation indicated that isolates carried no pathogenic factors and no virulence factors. In conclusion, Ln. mesenteroides isolates from Montenegrin traditional cheeses displayed a high genetic diversity and were unrelated to strains deposited in GenBank.


Sign in / Sign up

Export Citation Format

Share Document