Climate Change

Author(s):  
Pamela Hill

What is climate change? Climate change means long-term changes in atmospheric conditions—including temperature, wind patterns, and precipitation. Although climate fluctuations such as the great ice age cycles have happened in varying degrees many times throughout history, there is broad agreement that over the last sixty-five...

2011 ◽  
Vol 57 (2) ◽  
pp. 278-289 ◽  
Author(s):  
BRIAN FOLEY ◽  
IAN D. JONES ◽  
STEPHEN C. MABERLY ◽  
BRIAN RIPPEY

Author(s):  
Jiban Mani Poudel

In the 21st century, global climate change has become a public and political discourse. However, there is still a wide gap between global and local perspectives. The global perspective focuses on climate fluctuations that affect the larger region; and their analysis is based on long-term records over centuries and millennium. By comparison, local peoples’ perspectives vary locally, and local analyses are limited to a few days, years, decades and generations only. This paper examines how farmers in Kirtipur of Kathmandu Valley, Nepal, understand climate variability in their surroundings. The researcher has used a cognized model to understand farmers’ perception on weather fluctuations and climate change. The researcher has documented several eyewitness accounts of farmers about weather fluctuations which they have been observing in a lifetime. The researcher has also used rainfall data from 1970-2009 to test the accuracy of perceptions. Unlike meteorological analyses, farmers recall and their understanding of climatic variability by weather-crop interaction, and events associating with climatic fluctuations and perceptions are shaped by both physical visibility and cultural frame or belief system.DOI: http://dx.doi.org/10.3126/hn.v11i1.7200 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.30-34


2014 ◽  
Vol 15 (3) ◽  
pp. 1312-1322 ◽  
Author(s):  
Yanhong Wu ◽  
Hongxing Zheng ◽  
Bing Zhang ◽  
Dongmei Chen ◽  
Liping Lei

Abstract Long-term changes in the water budget of lakes in the Tibetan Plateau due to climate change are of great interest not only for the importance of water management, but also for the critical challenge due to the lack of observations. In this paper, the water budget of Nam Co Lake during 1980–2010 is simulated using a dynamical monthly water balance model. The simulated lake level is in good agreement with field investigations and the remotely sensed lake level. The long-term hydrological simulation shows that from 1980 to 2010, lake level rose from 4718.34 to 4724.93 m, accompanied by an increase of lake water storage volume from 77.33 × 109 to 83.66 × 109 m3. For the net lake level rise (5.93 m) during the period 1980–2010, the proportional contributions of rainfall–runoff, glacier melt, precipitation on the lake, lake percolation, and evaporation are 104.7%, 56.6%, 41.7%, −22.2%, and −80.9%, respectively. A positive but diminishing annual water surplus is found in Nam Co Lake, implying a continuous but slowing rise in lake level as a hydrological consequence of climate change.


Climate ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Emmanuel Dubois ◽  
Marie Larocque ◽  
Sylvain Gagné ◽  
Marco Braun

Long-term changes in precipitation and temperature indirectly impact aquifers through groundwater recharge (GWR). Although estimates of future GWR are needed for water resource management, they are uncertain in cold and humid climates due to the wide range in possible future climatic conditions. This work aims to (1) simulate the impacts of climate change on regional GWR for a cold and humid climate and (2) identify precipitation and temperature changes leading to significant long-term changes in GWR. Spatially distributed GWR is simulated in a case study for the southern Province of Quebec (Canada, 36,000 km2) using a water budget model. Climate scenarios from global climate models indicate warming temperatures and wetter conditions (RCP4.5 and RCP8.5; 1951–2100). The results show that annual precipitation increases of >+150 mm/yr or winter precipitation increases of >+25 mm will lead to significantly higher GWR. GWR is expected to decrease if the precipitation changes are lower than these thresholds. Significant GWR changes are produced only when the temperature change exceeds +2 °C. Temperature changes of >+4.5 °C limit the GWR increase to +30 mm/yr. This work provides useful insights into the regional assessment of future GWR in cold and humid climates, thus helping in planning decisions as climate change unfolds. The results are expected to be comparable to those in other regions with similar climates in post-glacial geological environments and future climate change conditions.


2018 ◽  
Vol 10 (9) ◽  
pp. 1414 ◽  
Author(s):  
Yahui Che ◽  
Linlu Mei ◽  
Yong Xue ◽  
Jie Guang ◽  
Lu She ◽  
...  

The European Space Agency’s (ESA’s) Aerosol Climate Change Initiative (CCI) project intends to exploit the robust, long-term, global aerosol optical thickness (AOT) dataset from Europe’s satellite observations. Newly released Swansea University (SU) aerosol products include ATSR-2 (1995-2003) and AATSR(2002-2012) retrieval with a spatial resolution of 10 km. Recently an experimental version of a retrieval using AATSR/MERIS synergy was developed to provide four months of data for initial testing. In this study, both AATSR retrieval (SU/AATSR) and AATSR/MERIS synergy retrieval (SU/synergy) datasets are validated globally using Aerosol Robotic Network (AERONET) observations for March, June, September, and December 2008, as suggested by the Aerosol-CCI project. The analysis includes the impacts of cloud screening, surface parameterization, and aerosol type selections for two datasets under different surface and atmospheric conditions. The comparison between SU/AATSR and SU/synergy shows very accurate and consistent global patterns. The global evaluation using AERONET shows that the SU/AATSR product exhibits slightly better agreement with AERONET than the SU/synergy product. SU/synergy retrieval overestimates AOT for all surface and aerosol conditions. SU/AATSR data is much more stable and has better quality; it slightly underestimates fine-mode dominated and absorbing AOTs yet slightly overestimates coarse-mode dominated and non-absorbing AOTs.


PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0227912 ◽  
Author(s):  
Iwona Gottfried ◽  
Tomasz Gottfried ◽  
Grzegorz Lesiński ◽  
Grzegorz Hebda ◽  
Maurycy Ignaczak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document