scholarly journals Potentials of Natural Tree Regeneration after Clearcutting in Subalpine Forests

2008 ◽  
Vol 23 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Juergen Kreyling ◽  
Andreas Schmiedinger ◽  
Ellen Macdonald ◽  
Carl Beiekuhnlein

Abstract Regeneration of interior mountain forests still is not adequately understood, although these forests are subject to intensified use over the last decades. We examined factors influencing the success of natural tree regeneration after harvesting in the Engelmann spruce–subalpine fir zone of the Monashee Mountains, British Columbia, Canada. Distance from the forest edge was an important factor for regeneration; at distances exceeding 70 m from the forest edge only 50% of plots showed sufficient natural regeneration to meet stocking targets compared with 90% of plots closer to forest edges. Seedling density and growth were superior in the more protected southern portions of clearcuts. Seedling growth was less in plots containing high cover of downed woody debris. There was no relationship between understory plant diversity or composition and tree seedling regeneration. However, cover of fireweed (Epilobium angustifolium) had a significant negative relationship with density but not growth of tree seedlings, particularly for lodgepole pine (Pinus contorta var. latifolia). Cover of fireweed decline substantially within the first 10 years after clearcutting. We conclude that natural regeneration of trees has potential to help achieve stocking targets and also to maintain natural diversity of tree species if spatial constraints, especially thresholds in clearcut size, are considered.

2005 ◽  
Vol 35 (8) ◽  
pp. 1877-1888 ◽  
Author(s):  
Roberta Parish ◽  
Joseph A Antos

We examined the potential of natural regeneration for stocking 1-ha patch cuts in high-elevation Engelmann spruce (Picea engelmannii Parry) – subalpine fir (Abies lasiocarpa (Hook.) Nutt.) forests. Using the Sicamous Creek Silvicultural Systems site, which was harvested during winter 1994–1995, we established 1-m2 plots in patch cuts, forest edge, and untreated control forest. We marked and recorded microsite characteristics for all advanced regeneration and new recruits for up to 5 years; over 12 000 individuals were included. Advanced regeneration was abundant and was about one-quarter spruce. Spruce and fir germinants occurred in all years, but numbers varied greatly, with a very large cohort in 1998. Both advanced regeneration and new recruits were concentrated on decaying logs. Mortality of advanced regeneration was high in the patch cuts following harvest, but subsequent survival was good, approaching rates in the untreated forest within 4 years. Survival rates were higher for spruce than fir, but differed little among surface types and microtopographic positions. Survival of new recruits was high, approximately 50% the first year and 70% during the second, and was similar between spruce and fir. If the 1998 cohort has similar survival, the patch cuts could be adequately stocked. Use of natural regeneration, in combination with infill planting, is a viable option for stocking small openings in wet high-elevation forests in southern British Columbia.


2000 ◽  
Vol 30 (7) ◽  
pp. 1148-1155 ◽  
Author(s):  
Masamichi Takahashi ◽  
Yoshimi Sakai ◽  
Reiko Ootomo ◽  
Masao Shiozaki

Forest floor microsite conditions and tree seedling establishment were studied at an old-growth Picea-Abies forest in Hokkaido Island, northern Japan. Tree seedlings were established abundantly on coarse woody debris (CWD) from decay class III, a class indicating moderate decay, to class V, the most advanced decay class. The height-class distribution of tree seedlings indicates that the recruitment of Picea glehnii (Fr. Schm.) Masters and Picea jezoensis (Sieb. et Zucc.) Carr. seedlings on CWD started on decay class II and was mostly restricted to CWD decay class III. Seedlings of Abies sachalinensis (Fr. Schm.) Masters also favored establishment on CWD but had a wide adaptability to most of the microsites. Although CWD functioned as a suitable seedbed, water extracts from CWD were acidic and had quite low mineral nutrient concentrations. Tree seedling establishment did not necessarily require high levels of nutrient content in microsites. Although the forest floor was largely covered by CWD, with 2056 m2·ha-1 of the total projected area covered by CWD, CWD decay class III covered only 366 m2·ha-1 of the forest floor, indicating that CWD as a functioning seedbed is limited by time and space on the forest floor.


1995 ◽  
Vol 25 (8) ◽  
pp. 1326-1339 ◽  
Author(s):  
Peter J. Weisberg ◽  
William L. Baker

Ecotone vegetation may be especially sensitive to climate change. In particular, the invasion of subalpine meadows by tree seedlings has been well documented. However, there has been no systematic analysis of tree regeneration across the environmental heterogeneity of the alpine forest–tundra ecotone (FTE). Also, the position of the FTE may be relictual from more favorable climates of the past and therefore unresponsive to changing climate. To assess the environmental controls on FTE tree regeneration, to determine whether the ecotone might be relictual, and to determine whether tree invasion of nonforested FTE areas is occurring, we measured tree regeneration in various environments within the FTE of Rocky Mountain National Park, Colorado. Generally, seedling establishment appears to be controlled by patterns of soil moisture. Little seedling establishment was observed in krummholz openings, except for high seedling densities in willow wetlands. Tree seedling invasion of tundra is rare. Therefore, the upper limits of the FTE in Rocky Mountain National Park may be relictual from more favorable climates of the past. Abundant seedling establishment in patch forest openings suggests that patch forest may be poised to change to closed forest.


1998 ◽  
Vol 28 (6) ◽  
pp. 932-936 ◽  
Author(s):  
Peter M Brown ◽  
Wayne D Shepperd ◽  
Stephen A Mata ◽  
Douglas L McClain

The number of years since tree death for wind-thrown logs of lodgepole pine (Pinus contorta var. latifolia Engelm.) and Engelmann spruce (Picea engelmannii Parry) was used to examine the longevity of this component of coarse woody debris in an old-growth subalpine forest in the central Rocky Mountains. Death dates of downed logs were determined by dendrochronological cross-dating methods. We were able to determine death dates for 73 logs from both species, the oldest being a lodgepole pine dead 139 years ago. Sound lodgepole pine and Engelmann spruce logs lying on the ground persisted for many decades with a majority of their volume intact. No difference was seen in decay classes of logs collected from two primary study sites on opposite (north and south) exposures. There was also no significant difference in decay classes between the two species, although lodgepole pine logs were in general older than Engelmann spruce logs within any decay class. There was little decrease in the specific gravity of wood remaining in logs with time, although there was a corresponding greater loss of wood volume.


Author(s):  
Carrie Woods ◽  
Katy Maleta ◽  
Kimmy Ortmann

Plant-plant interactions can vary depending on the severity of the environment. Positive interactions, such as facilitation, are important in early life stages while negative interactions, such as competition, predominate in later stages. Through succession, plant-plant interactions often change from facilitative to competitive. In northern temperate rainforests, gap dynamics result in tree falls that facilitate tree regeneration (nurse logs) as well as bryophyte succession. While the importance of nurse logs for tree seedlings is known, how the interactions of bryophyte communities and tree seedlings vary through succession of the log remains unclear. We examined the relationships of tree seedlings, bryophyte community composition, bryophyte depth, and percent canopy cover in 166 plots on nurse logs and the forest floor in the Hoh rainforest in Washington, USA. Tree seedling density was highest on young logs with early-colonizing bryophyte species (e.g., Rhizomnium glabrescens), and lowest on decayed logs with Hylocomium splendens, a long-lived moss that reaches depths >20 cm. As a result, bryophyte depth increased with nurse log decay and was negatively associated with tree seedling density. Tree seedling density was 4.6x higher on nurse logs than on the forest floor, which was likely due to competitive exclusion by H. splendens. Nurse logs had 17 species of bryophytes while the forest floor had six, indicating that nurse logs contribute to maintaining bryophyte diversity. Nurse logs are essential for forest dynamics as they enable both tree seedlings and smaller bryophyte species to avoid competition with the dominant forest floor bryophyte, H. splendens. Given that H. splendens has a global distribution and is often dominant in forested systems across the northern hemisphere, it is likely a widespread driver of plant community structure. Our findings indicate that plant-plant interactions shift with succession on nurse logs from facilitative to competitive and, thus, influence forest community structure and dynamics.


Ecosystems ◽  
2021 ◽  
Author(s):  
Theresa S. Ibáñez ◽  
David A. Wardle ◽  
Michael J. Gundale ◽  
Marie-Charlotte Nilsson

AbstractWildfire disturbance is important for tree regeneration in boreal ecosystems. A considerable amount of literature has been published on how wildfires affect boreal forest regeneration. However, we lack understanding about how soil-mediated effects of fire disturbance on seedlings occur via soil abiotic properties versus soil biota. We collected soil from stands with three different severities of burning (high, low and unburned) and conducted two greenhouse experiments to explore how seedlings of tree species (Betula pendula, Pinus sylvestris and Picea abies) performed in live soils and in sterilized soil inoculated by live soil from each of the three burning severities. Seedlings grown in live soil grew best in unburned soil. When sterilized soils were reinoculated with live soil, seedlings of P. abies and P. sylvestris grew better in soil from low burn severity stands than soil from either high severity or unburned stands, demonstrating that fire disturbance may favor post-fire regeneration of conifers in part due to the presence of soil biota that persists when fire severity is low or recovers quickly post-fire. Betula pendula did not respond to soil biota and was instead driven by changes in abiotic soil properties following fire. Our study provides strong evidence that high fire severity creates soil conditions that are adverse for seedling regeneration, but that low burn severity promotes soil biota that stimulates growth and potential regeneration of conifers. It also shows that species-specific responses to abiotic and biotic soil characteristics are altered by variation in fire severity. This has important implications for tree regeneration because it points to the role of plant–soil–microbial feedbacks in promoting successful establishment, and potentially successional trajectories and species dominance in boreal forests in the future as fire regimes become increasingly severe through climate change.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1542
Author(s):  
Nadezhda V. Genikova ◽  
Viktor N. Mamontov ◽  
Alexander M. Kryshen ◽  
Vladimir A. Kharitonov ◽  
Sergey A. Moshnikov ◽  
...  

Bilberry spruce forests are the most widespread forest type in the European boreal zone. Limiting the clear-cuttings size leads to fragmentation of forest cover and the appearance of large areas of ecotone complexes, composed of forest (F), a transition from forest to the cut-over site under tree canopy (FE), a transition from forest to the cut-over site beyond tree canopy (CE), and the actual clear-cut site (C). Natural regeneration of woody species (spruce, birch, rowan) in the bilberry spruce stand—clear-cut ecotone complex was studied during the first decade after logging. The effects produced by the time since cutting, forest edge aspect, and the ground cover on the emergence and growth of trees and shrubs under forest canopy and openly in the clear-cut were investigated. Estimating the amount and size of different species in the regeneration showed FE and CE width to be 8 m—roughly half the height of first-story trees. Typical forest conditions (F) feature a relatively small amount of regenerating spruce and birch. The most favorable conditions for natural regeneration of spruce in the clear-cut—mature bilberry spruce stand ecotone are at the forest edge in areas of transition both towards the forest and towards the clear-cut (FE and CE). Clear-cut areas farther from the forest edge (C) offer an advantage to regenerating birch, which grows densely and actively in this area.


1989 ◽  
Vol 4 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Andrew C. Mason ◽  
David L. Adams

Abstract Bear damage was at least five times higher in thinned blocks than in adjacent unthinned blocks of western larch (Larix occidentalis), lodgepole pine (Pinus contorta), and Engelmann spruce (Picea engelmannii) on the Kootenai National Forest in northwest Montana. Western larch suffered the greatest damage (63% of all trees damaged and 92% of the trees killed). Damaged larch ranged from 4 to 13 in. dbh; the 4 to 8-in. dbh class accounted for 85% of the damage. Douglas-fir (Pseudotsuga menziesii), western redcedar (Thuja plicata), subalpine fir (Abies lasiocarpa), western white pine (Pinus monticola), and western hemlock (Tsuga heterophylla) were not damaged. Stand projections showed up to a 17% reduction in board-foot yield from bear damage, after 50 years, compared with hypothetical undamaged stands. West. J. Appl. For. 4(1):10-13, January 1989.


1980 ◽  
Vol 56 (2) ◽  
pp. 55-57 ◽  
Author(s):  
L. J. Herring ◽  
R. G. McMinn

The mean height of Engelmann spruce (Picea engelmanni Parry) advance growth 21 years after release by overstorey harvesting and residual tree felling, was eight times that of natural regeneration established following brush blade scarification. Subalpine fir (Abies lasiocarpa (Hook.) Nutt.) advance growth was nine times taller than natural regeneration established on scarified soil. Mean current annual height increment of Engelmann spruce and subalpine fir advance growth was 39 and 34 cm, respectively, compared with only 7 cm for natural regeneration on scarified soil. The performance gap does not appear to be narrowing. The poor performance of natural regeneration on mineral soil exposed by blade scarification is attributed to removal of organic and top mineral soil horizons beyond the immediate reach of seedlings. These soil layers remained available to the advance growth. Consideration should be given to preserving advance growth when scarification may be inappropriate.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Raimundas Petrokas

We can think of forests as multiscale multispecies networks, constantly evolving toward a climax or potential natural community—the successional process-pattern of natural regeneration that exhibits sensitivity to initial conditions. This is why I look into forest succession in light of the Red Queen hypothesis and focus on the key aspects of ecological self-organisation: dynamical criticality, evolvability and intransitivity. The idea of the review is that forest climax should be associated with habitat dynamics driven by a large continuum of ecologically equivalent time scales, so that the same ecological conclusions could be drawn statistically from any scale. A synthesis of the literature is undertaken in order to (1) present the framework for assessing habitat dynamics and (2) present the types of successional trajectories based on tree regeneration mode in forest gaps. In general, there are four types of successional trajectories within the process-pattern of forest regeneration that exhibits sensitivity to initial conditions: advance reproduction specialists, advance reproduction generalists, early reproduction generalists and early reproduction specialists. A successional trajectory is an expression of a fractal connectivity among certain patterns of natural regeneration in the multiscale multispecies networks of landscape habitats. Theoretically, the organically derived measures of pattern diversity, integrity and complexity, determined by the rates of recruitment, growth and mortality of forest tree species, are the means to test the efficacy of specific interventions to avert the disturbance-related decline in forest regeneration. That is of relevance to the emerging field of biocomplexity research.


Sign in / Sign up

Export Citation Format

Share Document