Lipid Extraction Process on Texturized Soy Flour and Wheat Gluten Protein-Protein Interactions in a Dough Matrix

2002 ◽  
Vol 79 (3) ◽  
pp. 434-438 ◽  
Author(s):  
K. J. Ryan ◽  
C. L. Homco-Ryan ◽  
J. Jenson ◽  
K. L. Robbins ◽  
C. Prestat ◽  
...  
2007 ◽  
Vol 1 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Dara L. Woerdeman ◽  
Suresh Shenoy ◽  
Dee Breger

The present work investigates the effects of hydroxyl end groups on the electrospinning behavior of wheat gluten protein. We focus upon the impact of both a low molecular weight additive (a star-branched polyol: ethoxylated trimethylolpropane) and a high molecular weight additive (a synthetic biodegradable polymer: poly(vinyl alcohol) on the ability to form electrospun fibers from wheat gluten. The presence of the star-branched polyol in the system appears to impede the formation of molecular entanglements and intermolecular disulfide bridges required for fiber formation, while the addition of poly(vinyl alcohol) (PVOH) to the system leads to a significant increase in the overall number of physical chain entanglements required for fiber formation. The mechanical testing data support the overriding importance of physical chain entanglements as larger amounts of PVOH are combined with wheat gluten. The tensile strength of the wheat gluten-based electrospun fibrous mats, which, increased by an order of magnitude upon adding 13% (w/w) PVOH to the electrospinning solution, resulted in a rapid increase in the measured toughness at 26% (w/w) PVOH. The corresponding scanning electron micrographs reveal that the addition of PVOH to the gluten system results in the formation of flat, ribbonlike fibers. Dough mixograms were also collected to further elucidate the effect of additional hydroxyl groups on the interactions between the gluten protein chains. Evidence reveals that in the high-concentration, doughy regime, a small fraction of the protein–water interactions are replaced by favorable polyol–protein interactions; however, in the dilute-concentration regime, these favorable polyol–protein interactions appear to develop at the expense of disulfide bond formation, a requirement for obtaining fibers via electrospinning.


2002 ◽  
Vol 67 (6) ◽  
pp. 2385-2390 ◽  
Author(s):  
K.J. Ryan ◽  
C.L. Homco-Ryan ◽  
J. Jenson ◽  
K.L. Robbins ◽  
C. Prestat ◽  
...  

1966 ◽  
Vol 44 (6) ◽  
pp. 917-925 ◽  
Author(s):  
Yang H. Oh ◽  
Benjamin E. Sanders ◽  
Charles W. Gehrke

Some of the physicochemical properties (solubility, viscosity, sedimentation) and the amino acid composition of the isolated S-zone and base proteins from soft-wheat gluten were studied. The S-zone proteins are homogeneous in size, of low molecular weight (about 20,000), and high intrinsic viscosity in buffer of pH 3,5, having stable structures whose unique solubility properties are related to their atypical amino acid content. The base protein molecules exist in a more folded conformation, having the properties of globular protein molecules. The protein–protein interactions, aggregation, and unfolding conformation of S-zone proteins are major contributing factors at neutral pH to the rheological properties of wheat flour, such as viscosity, elasticity, and cohesiveness.


2011 ◽  
Vol 49 (08) ◽  
Author(s):  
LC König ◽  
M Meinhard ◽  
C Sandig ◽  
MH Bender ◽  
A Lovas ◽  
...  

1974 ◽  
Vol 31 (03) ◽  
pp. 403-414 ◽  
Author(s):  
Terence Cartwright

SummaryA method is described for the extraction with buffers of near physiological pH of a plasminogen activator from porcine salivary glands. Substantial purification of the activator was achieved although this was to some extent complicated by concomitant extraction of nucleic acid from the glands. Preliminary characterization experiments using specific inhibitors suggested that the activator functioned by a similar mechanism to that proposed for urokinase, but with some important kinetic differences in two-stage assay systems. The lack of reactivity of the pig gland enzyme in these systems might be related to the tendency to protein-protein interactions observed with this material.


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


Sign in / Sign up

Export Citation Format

Share Document