Management of Frogeye Leaf Spot and Fungicide Resistance

Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 544-550 ◽  
Author(s):  
F. Zeng ◽  
E. Arnao ◽  
G. Zhang ◽  
G. Olaya ◽  
J. Wullschleger ◽  
...  

Frogeye leaf spot of soybean, caused by the fungus Cercospora sojina, reduces soybean yields in most of the top-producing countries around the world. Control strategies for frogeye leaf spot can rely heavily on quinone outside inhibitor (QoI) fungicides. In 2010, QoI fungicide-resistant C. sojina isolates were identified in Tennessee for the first time. As the target of QoI fungicides, the cytochrome b gene present in fungal mitochondria has played a key role in the development of resistance to this fungicide class. The cytochrome b genes from three QoI-sensitive and three QoI-resistant C. sojina isolates were cloned and sequenced. The complete coding sequence of the cytochrome b gene was identified and found to encode 396 amino acids. The QoI-resistant C. sojina isolates contained the G143A mutation in the cytochrome b gene, a guanidine to cytosine transversion at the second position in codon 143 that causes an amino acid substitution of alanine for glycine. C. sojina-specific polymerase chain reaction primer sets and TaqMan probes were developed to efficiently discriminate QoI-resistant and -sensitive isolates. The molecular basis of QoI fungicide resistance in field isolates of C. sojina was identified as the G143A mutation, and specific molecular approaches were developed to discriminate and to track QoI-resistant and -sensitive isolates of C. sojina.


2020 ◽  
Vol 21 (4) ◽  
pp. 230-231 ◽  
Author(s):  
Danilo L. Neves ◽  
Martin I. Chilvers ◽  
Tamra A. Jackson-Ziems ◽  
Dean K. Malvick ◽  
Carl A. Bradley

Frogeye leaf spot, caused by Cercospora sojina, is an important disease of soybean (Glycine max) in the United States. An important tactic to manage frogeye leaf spot is to apply foliar fungicides. Isolates of C. sojina were collected from soybean fields in one county in Michigan, three counties in Minnesota, and 10 counties in Nebraska in 2019, and they were tested for resistance to quinone outside inhibitor (QoI) fungicides using a discriminatory dose assay, a PCR assay, and DNA sequencing. Results of the testing indicated that QoI fungicide-resistant isolates were detected in isolates from all counties. Testing results also indicated that the G143A mutation was responsible for the QoI fungicide resistance. This is the first report of QoI fungicide-resistant C. sojina isolates in Michigan, Minnesota, and Nebraska and expands the geographical distribution of QoI fungicide-resistant C. sojina isolates to 18 states in total.


Plant Disease ◽  
2021 ◽  
Author(s):  
Bennett Harrelson ◽  
Bikash Ghimire ◽  
Robert Kemerait ◽  
Albert Culbreath ◽  
Zenglu Li ◽  
...  

Frogeye leaf spot (FLS), caused by the fungal pathogen Cercospora sojina K. Hara, is a foliar disease of soybean (Glycine max L. (Merr.)) responsible for yield reductions throughout the major soybean producing regions in the world. In the United States, management of FLS relies heavily on the use of resistant cultivars and in-season fungicide applications, specifically within the class of quinone outside inhibitors (QoIs), which has resulted in the development of fungicide resistance in many states. In 2018 and 2019, 80 isolates of C. sojina were collected from six counties in Georgia and screened for QoI fungicide resistance using molecular and in vitro assays, with resistant isolates being confirmed from three counties. Additionally, 50 isolates, including a “baseline isolate” with no prior fungicide exposure, were used to determine the percent reduction of mycelial growth to two fungicides, azoxystrobin and pyraclostrobin, at six concentrations: 0.0001, 0.001, 0.01, 0.1, 1, and 10 g ml-1. Mycelial growth observed for resistant isolates varied significantly from both the sensitive isolates and the baseline isolate for azoxystrobin concentrations of 10, 1, 0.1, and 0.01 g ml-1 and for pyraclostrobin concentrations of 10, 1, 0.1, 0.01 and 0.001 g ml-1. Moreover, 40 isolates were used to evaluate pathogen race on six soybean differential cultivars by assessing susceptible or resistant reactions. Isolate reactions suggested 12 races of C. sojina present in Georgia, four of which have not been previously described. Species richness indicators (rarefaction and abundance-based coverage estimator - ACE) indicated that within-county C. sojina race numbers were undersampled in the present study, suggesting the potential for the presence of either additional undescribed races or known but unaccounted for races in Georgia. However, no isolates were pathogenic on differential cultivar ‘Davis’, carrying the Rcs3 resistance allele, suggesting the gene is still an effective source of resistance in Georgia.


2020 ◽  
Vol 21 (4) ◽  
pp. 288-290
Author(s):  
Andrew Ernst ◽  
Lindsey Thiessen

Frogeye leaf spot of tobacco caused by Cercospora nicotianae (Ellis & Everhart) is a widespread disease of cultivated tobacco. Recently, flue-cured tobacco producers in North Carolina reported losses due to frogeye leaf spot disease despite the use of strobilurin fungicides. Isolates (n = 4) were obtained in 2018 from affected tobacco leaves from Cumberland, Lenoir, and Nash counties. In 2019, isolates (n = 28) were collected from a field in Wilson county. After sequencing the cytb region of 32 isolates, 30 contained a single point mutation conferring a G143A or F129L amino acid change that resulted in quinone outside inhibitor (QoI) fungicide resistance. Although these resistance mutations have been found in air-cured tobacco in Kentucky, to the best of our knowledge, the present study is the first to report QoI resistance mutations in C. nicotianae populations in flue-cured tobacco and a first report in North Carolina.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0177220 ◽  
Author(s):  
Sandesh Kumar Shrestha ◽  
Alicia Cochran ◽  
Alemu Mengistu ◽  
Kurt Lamour ◽  
Arturo Castro-Rocha ◽  
...  

2011 ◽  
Vol 11 (1) ◽  
pp. 94-96
Author(s):  
Osvaldo Toshiyuki Hamawaki ◽  
Larissa Barbosa de Sousa ◽  
Daniela Freitas Rezende ◽  
Anaísa Kato Cavalcante ◽  
Maria Amélia dos Santos ◽  
...  

The release of cultivars has ensured higher yield associated with increased tolerance to climatic adversity. 'UFUS Riqueza' is resistant to natural dehiscence and to the diseases: bacterial pustule, downy mildew, frogeye leaf spot, brown stem rot, stem canker and stem necrosis and can reach yields of 3475 kg ha-1, with grain contents of 18 % oil and 39 % protein.


2021 ◽  
pp. 681-706
Author(s):  
Neil Havis ◽  

Ramularia leaf spot is an emerging pathogen across barley growing regions of the world. It's rise from minor to major disease has been rapid over the last twenty years. The causal pathogen, Ramularia collo-cygni is poorly understood but it has been shown to have a complex life cycle and the ability to exist on many hosts in an endophytic state. The rate of development of fungicide resistance in the fungus is also extremely fast and many of the major single site fungicides are no longer effective in many countries. With multisite fungicides having their approval or reconsidered and no consistent varietal resistance available, control of the disease is increasing challenging. This chapter reviews the latest research into Ramularia biology and control and highlights the areas where recent advances have been made.


2009 ◽  
Vol 3 (1) ◽  
pp. 94-98 ◽  
Author(s):  
J. Grover Shannon ◽  
Jeong-Dong Lee ◽  
J. Allen Wrather ◽  
David A. Sleper ◽  
M. A. Rouf Mian ◽  
...  

2001 ◽  
Vol 120 (1) ◽  
pp. 73-78 ◽  
Author(s):  
W. Yang ◽  
D. B. Weaver ◽  
B. L. Nielsen ◽  
J. Qiu

Sign in / Sign up

Export Citation Format

Share Document