scholarly journals A Kelch Repeat Protein, Cokel1p, Associates with Microtubules and Is Involved in Appressorium Development in Colletotrichum orbiculare

2010 ◽  
Vol 23 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Ayumu Sakaguchi ◽  
Toshihiko Miyaji ◽  
Gento Tsuji ◽  
Yasuyuki Kubo

Kelch repeat proteins are conserved in diverse organisms and some are known to mediate fundamental cellular functions. We isolated the gene CoKEL1, encoding a novel kelch repeat protein, from Colletotrichum orbiculare. Analysis of a cokel1 mutant indicated that CoKEL1 is involved in proper appressorium development and cell wall synthesis. Appressoria produced by cokel1 disruption mutants showed irregular shape and impairment of turgor generation and the mutant appressoria rarely penetrated to form infection hyphae in host epidermal cells. Accordingly, cokel1 mutants had reduced pathogenicity on host leaves compared with the wild type. Furthermore, the cokel1 mutant was more sensitive to cell-wall-degrading enzymes and showed altered labeling with the cell wall stain Calcofluor white. Cokel1p was localized on cortical and spindle microtubules in vegetative hyphae. These results suggest that Cokel1p is a microtubule-associated protein involved in infection-related morphogenesis and pathogenicity. This is the first report that a kelch repeat protein is required for the pathogenicity of a fungal plant pathogen.

2017 ◽  
Vol 30 (11) ◽  
pp. 886-895 ◽  
Author(s):  
Maria Chiara Paccanaro ◽  
Luca Sella ◽  
Carla Castiglioni ◽  
Francesca Giacomello ◽  
Ana Lilia Martínez-Rocha ◽  
...  

Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 601
Author(s):  
Silvio Tundo ◽  
Maria Chiara Paccanaro ◽  
Ibrahim Elmaghraby ◽  
Ilaria Moscetti ◽  
Renato D’Ovidio ◽  
...  

During host plant infection, pathogens produce a wide array of cell wall degrading enzymes (CWDEs) to break the plant cell wall. Among CWDEs, xylanases are key enzymes in the degradation of xylan, the main component of hemicellulose. Targeted deletion experiments support the direct involvement of the xylanase BcXyn11a in the pathogenesis of Botrytis cinerea. Since the Triticum aestivum xylanase inhibitor-I (TAXI-I) has been shown to inhibit BcXyn11a, we verified if TAXI-I could be exploited to counteract B. cinerea infections. With this aim, we first produced Nicotiana tabacum plants transiently expressing TAXI-I, observing increased resistance to B. cinerea. Subsequently, we transformed Arabidopsis thaliana to express TAXI-I constitutively, and we obtained three transgenic lines exhibiting a variable amount of TAXI-I. The line with the higher level of TAXI-I showed increased resistance to B. cinerea and the absence of necrotic lesions when infiltrated with BcXyn11a. Finally, in a droplet application experiment on wild-type Arabidopsis leaves, TAXI-I prevented the necrotizing activity of BcXyn11a. These results would confirm that the contribution of BcXyn11a to virulence is due to its necrotizing rather than enzymatic activity. In conclusion, our experiments highlight the ability of the TAXI-I xylanase inhibitor to counteract B. cinerea infection presumably by preventing the necrotizing activity of BcXyn11a.


2005 ◽  
Vol 18 (12) ◽  
pp. 1296-1305 ◽  
Author(s):  
Huanli Liu ◽  
Shuping Zhang ◽  
Mark A. Schell ◽  
Timothy P. Denny

Ralstonia solanacearum, like many phytopathogenic bacteria, makes multiple extracellular plant cell-wall-degrading enzymes (CWDE), some of which contribute to its ability to cause wilt disease. CWDE and many other proteins are secreted to the milieu via the highly conserved type II protein secretion system (T2SS). R. solanacearum with a defective T2SS is weakly virulent, but it is not known whether this is due to absence of all the CWDE or the loss of other secreted proteins that contribute to disease. These alternatives were investigated by creating mutants of wild-type strain GMI1000 lacking either the T2SS or up to six CWDE and comparing them for virulence on tomato plants. To create unmarked deletions, genomic regions flanking the target gene were polymerase chain reaction (PCR)-amplified, were fused using splice overlap extension PCR, were cloned into a suicide plasmid harboring the sacB counter-selectable marker, and then, were site-specifically introduced into the genome. Various combinations of five deletions (δpehA, δpehB, δpehC, δpme, and δegl) and one inactivated allele (cbhA::aphA-3) resulted in 15 mutants missing one to six CWDE. In soil-drench inoculation assays, virulence of mutants lacking only pectic enzymes (PehA, PehB, PehC, and Pme) was not statistically different from GMI1000, but all the mutants lacking one or both cellulolytic enzymes (Egl or CbhA) wilted plants significantly more slowly than did the wild type. The GMI-6 mutant that lacks all six CWDE was more virulent than the mutant lacking only its two cellulolytic enzymes, and both were significantly more virulent than the T2SS mutant (GMI-D). Very similar results were observed in wounded-petiole inoculation assays, so GMI-6 and GMI-D appear to be less capable of colonizing tomato tissues after invasion. Because the T2SS mutant was much less virulent than the sixfold CWDE mutant, we conclude that other secreted proteins contribute substantially to the ability of R. solanacearum GMI1000 to systemically colonize tomato plants.


2012 ◽  
Vol 25 (12) ◽  
pp. 1552-1561 ◽  
Author(s):  
Shao Yu Lin ◽  
Shiho Okuda ◽  
Kyoko Ikeda ◽  
Tetsuro Okuno ◽  
Yoshitaka Takano

Both Colletotrichum and Magnaporthe spp. develop appressoria pigmented with melanin, which is essential for fungal pathogenicity. 1,8-Dihydroxynaphthalene (1,8-DHN) is believed to be polymerized to yield melanin around the appresorial cell wall through the oxidative activity of laccases. However, no 1,8-DHN laccase has yet been identified in either Colletotrichum or Magnaporthe spp. Here, we report a laccase gene, LAC2, that is involved in the appressorial melanization of Colletotrichum orbiculare, which causes cucumber anthracnose. LAC2 encodes a protein with a signal peptide and has high homology to fungal laccases. The conidial color of lac2 mutants is distinct from that of the C. orbiculare wild type, and the mutants are nonpathogenic. Notably, the mutant appressoria are defective in melanization, and a host invasion assay showed that the appressoria are nonfunctional. LAC2 was induced during appressorial melanization. These results suggest that LAC2 oxidizes 1,8-DHN in the appressoria. The LAC2 homologues of other fungi located in the same phylogenetic clade as LAC2 fully complemented the lac2 mutants. Interestingly, a LAC2 homologue, located in a different clade, complemented the conidial pigmentation but not appressorial melanization of the mutants, suggesting that the LAC2 function in appressorial melanization might only be conserved in laccases of the LAC2 clade.


2010 ◽  
Vol 100 (12) ◽  
pp. 1364-1372 ◽  
Author(s):  
Marina Nadal ◽  
Maria D. Garcia-Pedrajas ◽  
Scott E. Gold

Many fungal plant pathogens are known to produce extracellular enzymes that degrade cell wall elements required for host penetration and infection. Due to gene redundancy, single gene deletions generally do not address the importance of these enzymes in pathogenicity. Cell wall degrading enzymes (CWDEs) in fungi are often subject to carbon catabolite repression at the transcriptional level such that, when glucose is available, CWDE-encoding genes, along with many other genes, are repressed. In Saccharomyces cerevisiae, one of the main players controlling this process is SNF1, which encodes a protein kinase. In this yeast, Snf1p is required to release glucose repression when this sugar is depleted from the growth medium. We have employed a reverse genetic approach to explore the role of the SNF1 ortholog as a potential regulator of CWDE gene expression in Ustilago maydis. We identified U. maydis snf1 and deleted it from the fungal genome. Consistent with our hypothesis, the relative expression of an endoglucanase and a pectinase was higher in the wild type than in the Δsnf1 mutant strain when glucose was depleted from the growth medium. However, when cells were grown in derepressive conditions, the relative expression of two xylanase genes was unexpectedly higher in the Δsnf1 strain than in the wild type, indicating that, in this case, snf1 negatively regulated the expression of these genes. Additionally, we found that, contrary to several other fungal species, U. maydis Snf1 was not required for utilization of alternative carbon sources. Also, unlike in ascomycete plant pathogens, deletion of snf1 did not profoundly affect virulence in U. maydis.


1998 ◽  
Vol 9 (10) ◽  
pp. 2729-2738 ◽  
Author(s):  
Claudia Abeijon ◽  
Ling Yun Chen

CWH41, a gene involved in the assembly of cell wall β-1,6-glucan, has recently been shown to be the structural gene forSaccharomyces cerevisiae glucosidase I that is responsible for initiating the trimming of terminal α-1,2-glucose residue in the N-glycan processing pathway. To distinguish between a direct or indirect role of Cwh41p in the biosynthesis of β-1,6-glucan, we constructed a double mutant, alg5Δ(lacking dolichol-P-glucose synthase) cwh41Δ, and found that it has the same phenotype as the alg5Δsingle mutant. It contains wild-type levels of cell wall β-1,6-glucan, shows moderate underglycosylation of N-linked glycoproteins, and grows at concentrations of Calcofluor White (which interferes with cell wall assembly) that are lethal tocwh41Δ single mutant. The strong genetic interactions of CWH41 with KRE6 andKRE1, two other genes involved in the β-1,6-glucan biosynthetic pathway, disappear in the absence of dolichol-P-glucose synthase (alg5Δ). The triple mutantalg5Δcwh41Δkre6Δ is viable, whereas the double mutant cwh41Δkre6Δ in the same genetic background is not. The severe slow growth phenotype and 75% reduction in cell wall β-1,6-glucan, characteristic of the cwh41Δkre1Δdouble mutant, are not observed in the triple mutantalg5Δcwh41Δkre1Δ. Kre6p, a putative Golgi glucan synthase, is unstable in cwh41Δ strains, and its overexpression renders these cells Calcofluor White resistant. These results demonstrate that the role of glucosidase I (Cwh41p) in the biosynthesis of cell wall β-1,6-glucan is indirect and that dolichol-P-glucose is not an intermediate in this pathway.


2011 ◽  
Vol 24 (1) ◽  
pp. 129-142 ◽  
Author(s):  
Aliki K. Tzima ◽  
Epaminondas J. Paplomatas ◽  
Payungsak Rauyaree ◽  
Manuel D. Ospina-Giraldo ◽  
Seogchan Kang

Verticillium dahliae is a soilborne fungus causing vascular wilt in a diverse array of plant species. Its virulence has been attributed, among other factors, to the activity of hydrolytic cell wall–degrading enzymes (CWDE). The sucrose nonfermenting 1 gene (VdSNF1), which regulates catabolic repression, was disrupted in V. dahliae tomato race 1. Expression of CWDE in the resulting mutants was not induced in inductive medium and in simulated xylem fluid medium. Growth of the mutants was significantly reduced when grown with pectin or galactose as a carbon source whereas, with glucose, sucrose, and xylose, they grew similarly to wild-type and ectopic transformants. The mutants were severely impaired in virulence on tomato and eggplant (final disease severity reduced by an average of 87%). Microscopic observation of the infection behavior of a green fluorescent protein (gfp)-labeled VdSNF1 mutant (70ΔSF-gfp1) showed that it was defective in initial colonization of roots. Cross sections of tomato stem at the cotyledonary level showed that 70ΔSF-gfp1 colonized xylem vessels considerably less than the wild-type strain. The wild-type strain heavily colonized xylem vessels and adjacent parenchyma cells. Quantification of fungal biomass in plant tissues further confirmed reduced colonization of roots, stems, and cotyledons by 70ΔSF-gfp1 relative to that by the wild-type strain.


2008 ◽  
Vol 7 (9) ◽  
pp. 1530-1539 ◽  
Author(s):  
Jarrod R. Fortwendel ◽  
Kevin K. Fuller ◽  
Timothy J. Stephens ◽  
W. Clark Bacon ◽  
David S. Askew ◽  
...  

ABSTRACT The Ras family of proteins is a large group of monomeric GTPases. Members of the fungal Ras family act as molecular switches that transduce signals from the outside of the cell to signaling cascades inside the cell. A. fumigatus RasA is 94% identical to the essential RasA gene of Aspergillus nidulans and is the Ras family member sharing the highest identity to Ras homologs studied in many other fungi. In this study, we report that rasA is not essential in A. fumigatus, but its absence is associated with slowed germination and a severe defect in radial growth. The ΔrasA hyphae were more than two times the diameter of wild-type hyphae, and they displayed repeated changes in the axis of polarity during hyphal growth. The deformed hyphae accumulated numerous nuclei within each hyphal compartment. The ΔrasA mutant conidiated poorly, but this phenotype could be ameliorated by growth on osmotically stabilized media. The ΔrasA mutant also showed increased susceptibility to cell wall stressors, stained more intensely with calcofluor white, and was refractory to lysing enzymes used to make protoplasts, suggesting an alteration of the cell wall. All phenotypes associated with deletion of rasA could be corrected by reinsertion of the wild-type gene. These data demonstrate a crucial role for RasA in both hyphal growth and asexual development in A. fumigatus and provide evidence that RasA function is linked to cell wall integrity.


2021 ◽  
Author(s):  
Marie Synakewicz ◽  
Rohan S. Eapen ◽  
Albert Perez-Riba ◽  
Daniela Bauer ◽  
Andreas Weißl ◽  
...  

AbstractTandem-repeat proteins comprise small secondary structure motifs that stack to form one-dimensional arrays with distinctive dynamic properties that are proposed to direct their cellular functions. Here, we report the force response of consensus-designed tetratricopeptide repeats (CTPRs) – superhelical arrays of short helix-turn-helix motifs. Not only are we able to directly observe the repeat-protein superhelix in the force data, but we also find that individual repeats undergo rapid fluctuations between folded and unfolded conformations resulting in a spring-like mechanical response. Using protein engineering, we show how the superhelical geometry can be altered by carefully placed amino-acid substitution and subsequently employ Ising model analysis to examine how these changes affect repeat stability and inter-repeat coupling in ensemble and single-molecule experiments. The Ising models furthermore allow us to map the unfolding pathway of CTPRs under mechanical load revealing how the repeat arrays are unzipped from both ends at the same time. Our findings provide the means to dissect and modulate repeat-protein dynamics and stability, thereby supporting ongoing research efforts into their functional relevance and exploiting them for nanotechnology and biomedical applications.


2010 ◽  
Vol 150 ◽  
pp. 513-514
Author(s):  
A.M. Polizeli ◽  
M.A. Moraes ◽  
J.A. Jorge ◽  
H.F. Terenzi ◽  
M.L.T.M. Polizeli

Sign in / Sign up

Export Citation Format

Share Document