Systemic Infection of Cowpea by Two Isolates of Brome Mosaic Virus

Plant Disease ◽  
1987 ◽  
Vol 71 (6) ◽  
pp. 557 ◽  
Author(s):  
R. A. Valverde
2006 ◽  
Vol 19 (11) ◽  
pp. 1229-1239 ◽  
Author(s):  
Xin Shun Ding ◽  
William L. Schneider ◽  
Srinivasa Rao Chaluvadi ◽  
M. A. Rouf Mian ◽  
Richard S. Nelson

Virus-induced gene silencing (VIGS) is used to analyze gene function in dicotyledonous plants but less so in monocotyledonous plants (particularly rice and corn), partially due to the limited number of virus expression vectors available. Here, we report the cloning and modification for VIGS of a virus from Festuca arundinacea Schreb. (tall fescue) that caused systemic mosaic symptoms on barley, rice, and a specific cultivar of maize (Va35) under greenhouse conditions. Through sequencing, the virus was determined to be a strain of Brome mosaic virus (BMV). The virus was named F-BMV (F for Festuca), and genetic determinants that controlled the systemic infection of rice were mapped to RNAs 1 and 2 of the tripartite genome. cDNA from RNA 3 of the Russian strain of BMV (R-BMV) was modified to accept inserts from foreign genes. Coinoculation of RNAs 1 and 2 from F-BMV and RNA 3 from R-BMV expressing a portion of a plant gene to leaves of barley, rice, and maize plants resulted in visual silencing-like phenotypes. The visual phenotypes were correlated with decreased target host transcript levels in the corresponding leaves. The VIGS visual phenotype varied from maintained during silencing of actin 1 transcript expression to transient with incomplete penetration through affected tissue during silencing of phytoene desaturase expression. F-BMV RNA 3 was modified to allow greater accumulation of virus while minimizing virus pathogenicity. The modified vector C-BMVA/G (C for chimeric) was shown to be useful for VIGS. These BMV vectors will be useful for analysis of gene function in rice and maize for which no VIGS system is reported.


1999 ◽  
Vol 12 (7) ◽  
pp. 615-623 ◽  
Author(s):  
Xin Shun Ding ◽  
Stanislaw Flasinski ◽  
Richard S. Nelson

Results from previous cytological studies on barley (Hordeum vulgare) infected with brome mosaic virus (BMV) indicated that this virus can infect and accumulate to high levels in mesophyll and other cell types within the leaves. Through immunocytochemistry and in situ hybridization, we have determined that BMV infection in barley is restricted predominantly to cells within and associated with vasculature when plants are grown at 24/20°C (day/night). This tissue restriction can be fully overcome by growing infected plants at 34°C for 2 h. Our results also indicate that BMV is likely to start systemic infection of young, uninoculated leaves in barley before spreading into all longitudinal veins in inoculated leaves. Possible barrier(s) to BMV movement between vascular bundle sheath cells and mesophyll cells, and the relationship between virus and photoassimilate transport through longitudinal and transverse veins are discussed.


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 542-544
Author(s):  
R. Pokorný ◽  
M. Porubová

Under greenhouse conditions 12 maize hybrids derived from crosses of four resistant lines with several lines of different level of susceptibility were evaluated for resistance to Czech isolate of Sugarcane mosaic virus (SCMV). These hybrids were not fully resistant to isolate of SCMV, but the symptoms on their newly growing leaves usually developed 1 to 3 weeks later in comparison with particular susceptible line, the course of infection was significantly slower and rate of infection lower. As for mechanisms of resistance, the presence of SCMV was detected by ELISA in inoculated leaves both of resistant and susceptible lines, but virus was detected 7 days later in resistant line. Systemic infection developed only in susceptible lines. These results indicate restriction of viral long distance movement in the resistant line.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhi-Yong Yan ◽  
Xiao-Jie Xu ◽  
Le Fang ◽  
Chao Geng ◽  
Yan-Ping Tian ◽  
...  

AbstractCoat protein (CP) is required for potyviruses to move and establish a systemic infection in plants. π-stackings formed by aromatic residues play critical roles in maintaining protein stability and functions. As we know, many aromatic residues located in the core region of potyvirus CPs are conserved. However, their roles in potyvirus infection remain largely unknown. Here, through analysis of the three-dimensional model of the tobacco vein banding mosaic virus (TVBMV; genus Potyvirus) CP, 16 aromatic residues were predicated to form π-stackings. The results of transient expression experiments demonstrated that deletion of any of these 16 aromatic residues reduced CP accumulation. Infectivity assays showed that deletion of any of these aromatic residues in the TVBMV infectious clone abolished cell-to-cell movement and reduced replication of the virus. Substitution of Y105 and Y147 individually with non-aromatic residues alanine or glycine reduced CP accumulation, virus replication, and abolished the ability of TVBMV to move intercellularly, while substitution of these two residues individually with aromatic residues phenylalanine or tryptophan, had no or little effect on CP accumulation and TVBMV systemic movement and replication. Similar results were obtained from the CP mutants of watermelon mosaic virus (WMV, genus Potyvirus). Taken together, our results demonstrate that multiple aromatic residues in CP are involved in potyvirus movement by forming π-stackings to maintain CP accumulation.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Decai Tuo ◽  
Peng Zhou ◽  
Pu Yan ◽  
Hongguang Cui ◽  
Yang Liu ◽  
...  

Abstract Background Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. Results In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. Conclusions This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.


2021 ◽  
Vol 22 (6) ◽  
pp. 3098
Author(s):  
Aleksander Strugała ◽  
Jakub Jagielski ◽  
Karol Kamel ◽  
Grzegorz Nowaczyk ◽  
Marcin Radom ◽  
...  

Virus-like particles (VLPs), due to their nanoscale dimensions, presence of interior cavities, self-organization abilities and responsiveness to environmental changes, are of interest in the field of nanotechnology. Nevertheless, comprehensive knowledge of VLP self-assembly principles is incomplete. VLP formation is governed by two types of interactions: protein–cargo and protein–protein. These interactions can be modulated by the physicochemical properties of the surroundings. Here, we used brome mosaic virus (BMV) capsid protein produced in an E. coli expression system to study the impact of ionic strength, pH and encapsulated cargo on the assembly of VLPs and their features. We showed that empty VLP assembly strongly depends on pH whereas ionic strength of the buffer plays secondary but significant role. Comparison of VLPs containing tRNA and polystyrene sulfonic acid (PSS) revealed that the structured tRNA profoundly increases VLPs stability. We also designed and produced mutated BMV capsid proteins that formed VLPs showing altered diameters and stability compared to VLPs composed of unmodified proteins. We also observed that VLPs containing unstructured polyelectrolyte (PSS) adopt compact but not necessarily more stable structures. Thus, our methodology of VLP production allows for obtaining different VLP variants and their adjustment to the incorporated cargo.


Author(s):  
Katarzyna Trzmiel

AbstractBrome mosaic virus (BMV) and cocksfoot mottle virus (CfMV) are pathogens of grass species including all economically important cereals. Both viruses have been identified in Poland therefore they create a potential risk to cereal crops. In this study, a duplex—reverse transcription—polymerase chain reaction (duplex-RT-PCR) was developed and optimized for simultaneous detection and differentiation of BMV and CfMV as well as for confirmation of their co-infection. Selected primers CfMVdiag-F/CfMVdiag-R and BMV2-F/BMV2-R amplified 390 bp and 798 bp RT-PCR products within coat protein (CP) region of CfMV and replicase gene of BMV, respectively. Duplex-RT-PCR was successfully applied for the detection of CfMV-P1 and different Polish BMV isolates. Moreover, one sample was found to be co-infected with BMV-ML1 and CfMV-ML1 isolates. The specificity of generated RT-PCR products was verified by sequencing. Duplex-RT-PCR, like conventional RT-PCR, was able to detect two viruses occurring in plant tissues in very low concentration (as low as 4.5 pg/µL of total RNA). In contrast to existing methods, newly developed technique offers a significant time and cost-saving advantage. In conclusion, duplex-RT-PCR is a useful tool which can be implemented by phytosanitary services to rapid detection and differentiation of BMV and CfMV.


Author(s):  
Roberto Alers-Velazquez ◽  
Sushant Khandekar ◽  
Clare Muller ◽  
Jennifer Boldt ◽  
Scott Leisner

AbstractLower temperatures delayed development of systemic symptoms by Cauliflower mosaic virus (CaMV) in two different plant hosts. However, lower temperature exposure increased CaMV nucleic acid levels in leaves of systemically-infected turnips. Furthermore, lower temperature altered the formation of aggregates formed by the CaMV major inclusion body (IB) protein, P6. Finally, lower temperature altered the architecture of the actin cytoskeleton. These data may suggest that lower temperatures alter the actin cytoskeleton, facilitating the formation of larger IBs that hold on to their internal virions more strongly than small ones, impairing virus particle release and causing a delay in systemic infection.


Sign in / Sign up

Export Citation Format

Share Document