scholarly journals Lr19 Resistance in Wheat Becomes Susceptible to Puccinia triticina in India

Plant Disease ◽  
2005 ◽  
Vol 89 (12) ◽  
pp. 1360-1360 ◽  
Author(s):  
S. C. Bhardwaj ◽  
M. Prashar ◽  
S. Kumar ◽  
S. K. Jain ◽  
D. Datta

Lr19, a resistance gene originally transferred from Agropyron elongatum to wheat (Triticum aestivum L.), has remained effective worldwide against leaf rust (Puccinia triticina Eriks.) except in Mexico (1). This report records a new pathotype of P. triticina virulent on Lr19 from India. From 2003 to 2004, 622 wheat leaf rust samples from 14 states were subjected to pathotype analysis. Samples were established on susceptible wheat cv. Agra Local, and pathotypes were identified on three sets of differentials following binomial nomenclature (3). Virulence on Lr19 (Agatha T4 line) was observed in approximately 2% of samples. These samples were picked from Lr19 (NIL), cvs. Ajit, Lal Bahadur, Local Red, Lok1, and Nirbhay from Karnataka and Gujarat states. All Lr19 virulent isolates were identical. The reference culture is being maintained on susceptible wheat cv. Agra Local and has also been put under long-term storage in a national repository at Flowerdale. From 2004 to 2005, this pathotype was detected in 6.3% of samples from central and peninsular India. There is no wheat variety with Lr19 under cultivation in India, however, it is being used in wheat breeding programs targeted at building resistance against leaf and stem rusts. NIL's Lr19/Sr25 (LC25) and Lr19/Sr25 (82.2711) were also susceptible to this isolate, whereas Lr19/Sr25 (spring accession) was resistant. The new isolate, designated as 253R31 (77-8), appears to be close to the pathotype 109R31 (4) with additional virulence for Lr19. The avirulence/virulence formula of pathotype 253R31 is Lr9, 23, 24, 25, 26, 27+31, 28, 29, 32, 36, 39, 41, 42, 43, 45/Lr1, 2a, 2b, 2c, 3, 10, 11, 12, 13, 14a, 14b, 14ab, 15, 16, 17, 18, 20, 21, 22a, 22b, 30, 33, 34, 35, 37, 38, 40, 44, 48, and 49. To our knowledge, this is the first report of virulence on Lr19 from two states of India. On international rust differentials, it is designated as TGTTQ (2), and is different from CBJ/QQ (1), the other isolate reported virulent on Lr19 from Mexico. The Mexican isolate is avirulent on Lr1, 2a, 2b, 2c, 3ka, 16, 21, and 30 to which the Indian isolate is virulent. However, both isolates are avirulent on Lr9, 24, 26, 36, and Lr42. Among the wheat cultivars identified during the last 6 years, HD2824, HD2833, HD2864, HI1500, HS375, HUW 510, HW 2044, HW 5001, Lok 45, MACS 6145, MP4010, NW 2036, PBW 443, PBW 498, PBW 502, PBW 524, Raj 4037, UP 2565, VL 804, VL 829, and VL 832 and lines of wheat possessing Lr9, Lr23, Lr24, and Lr26 showed resistance to this pathotype. PBW 343, which occupies more than 5 million ha in India, is also resistant to this pathotype along with PBW 373. An integrated strategy using a combination of diverse resistance genes, deployment of cultivars by using pathotype distribution data, slow rusting, and adult plant resistance is in place to curtail selection of new pathotypes and prevent rust epiphytotics. References: (1) J. Huerta-Espino and R. P. Singh. Plant Dis. 78:640,1994. (2) D. V. Mc Vey et al. Plant Dis. 88:271, 2004. (3) S. Nagarajan et al. Curr. Sci. 52:413, 1983. (4) S. K. Nayar et al. Curr. Sci. 44:742, 1975.

Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1111-1118 ◽  
Author(s):  
J. X. Zhang ◽  
R. P. Singh ◽  
J. A. Kolmer ◽  
J. Huerta-Espino ◽  
Y. Jin ◽  
...  

The CIMMYT-developed spring wheat ‘Brambling’ has a high level of adult-plant resistance (APR) to leaf rust caused by Puccinia triticina. Our objectives were to determine the genetic basis of resistance in seedlings and adult plants and the magnitude of genotype × environment effects on the expression of APR. Brambling was crossed with spring wheat ‘Jupateco 73S’ that is highly susceptible to current predominant P. triticina races in Mexico and the United States. The F1, F2:3, F4:5, F4:6, and F5:7 recombinant inbred lines (RILs) were evaluated under artificial field epidemics in Mexico and St. Paul, MN. The RILs also were tested with five races of P. triticina in greenhouse seedling experiments. A DNA marker was used to postulate the presence of slow-rusting gene Lr34 in the RILs. F1 data suggested strong dominant effect of the APR genes in Brambling. The proportion of homozygous susceptible lines in each generation indicated the presence of three effective resistance genes in adult plants of Brambling in tests in Mexico and three or four genes in tests in St. Paul. The RILs segregated for seedling genes Lr14a and Lr23 and adult-plant slow-rusting gene Lr34 derived from Brambling and Lr17a from Jupateco 73S. Gene Lr23 conditioned APR to P. triticina races present in the St. Paul nursery and accounted for the additional effective gene at this location. Expression of APR was influenced by the environment in the RILs, even though Brambling displayed a consistent response, indicating that stability of APR can be achieved by combinations of slow-rusting resistance genes.


2019 ◽  
Vol 18 (6) ◽  
pp. 1396-1408 ◽  
Author(s):  
Fang Liu ◽  
Yusheng Zhao ◽  
Sebastian Beier ◽  
Yong Jiang ◽  
Patrick Thorwarth ◽  
...  

2020 ◽  
Vol 61 (4) ◽  
pp. 503-511 ◽  
Author(s):  
Agnieszka Tomkowiak ◽  
Tomasz Jędrzejewski ◽  
Julia Spychała ◽  
Jakub Kuczyński ◽  
Michał T. Kwiatek ◽  
...  

Abstract Lr46/Yr29/Pm39 (Lr46) is a gene for slow rusting resistance in wheat. The aim of the study was to analyze the miRNA expression in selected common wheat cultivars carrying resistance genes, Lr46 among others (HN Rod, Pavon‘S’, Myna‘S’, Frontana‘S’, and Sparrow’S’) in response to leaf rust infection caused by Puccinia triticina Erikss. In the Pavon ‘S’, Myna ‘S’, Frontana‘S’, and Sparow‘S’ varieties a product with a length of 242 bp has been identified, which is specific to the Xwmc44 marker linked to the brown rust resistance gene Lr46. In the next step, the differences in the expression of microRNA (miR5085 and miR164) associated with the Lr46 gene, which is responsible for different resistance of selected wheat cultivars to leaf rust, were examined using emulsion PCR (ddPCR). In the experiment, biotic stress was induced in mature plants by infecting them with fungal spores under controlled conditions in a growth chamber. For analysis the plant material was collected before inoculation and 6, 12, 24, and 48 h after inoculation. The experiments also showed that plant infection with Puccinia triticina resulted in an increase in miR164 expression in cultivars carrying the Lr46 gene. The expression of miR164 remained stable in a control cultivar (HN ROD) lacking this gene. This has proved that miR164 can be involved in leaf rust resistance mechanisms.


2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S155-S159 ◽  
Author(s):  
P.K. Malaker ◽  
M.M.A. Reza

Leaf rust caused by Puccinia triticina is the most important disease among the three rusts of wheat in Bangladesh. The disease occurs in all wheat growing areas of the country with varying degrees of severity. Stem rust caused by P. graminis f.sp. tritici was last observed during the mid 1980s, while yellow rust caused by P. striiformis f.sp. tritici occurs occasionally in the north-western region, where a relatively cooler climate prevails during the winter months. None of the rusts has yet reached an epidemic level, but damaging epidemics may occur in future, particularly if a virulent race develops or is introduced. The genes conferring rust resistance in the breeding lines and wheat varieties released in Bangladesh were investigated at CIMMYT-Mexico and DWR-India. The resistance genes Lr1, Lr3, Lr10, Lr13, Lr23 and Lr26, Sr2, Sr5, Sr7b, Sr8b, Sr9b, Sr11 and Sr31; and Yr2KS and Yr9 were found. An adult plant slow rusting resistance gene Lr34 was also identified in some of the breeding lines and varieties based on the presence of clear leaf tip necrosis under field conditions. Considering the possible risk of migration of the devastating Ug99 race of stem rust into the Indo-Pak subcontinent, the Bangladeshi wheat lines and cultivars are being regularly sent to KARI in Kenya for testing their resistance against this race. The resistant lines have been included in multi-location yield trials and multiplied for future use in order to mitigate the threat of Ug99. The resistant lines have also been included in crossing schemes to develop genetic diversity of rust resistance.


Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 644-651 ◽  
Author(s):  
R. P. Singh ◽  
W. Q. Chen ◽  
Z. H. He

Leaf rust, caused by Puccinia triticina, is an important disease of wheat (Triticum aestivum) in China. Sixty-one spring and 102 facultative or winter growth habit wheat cultivars from China and a set of testers, carrying named Lr genes, were evaluated for resistance at the seedling growth stage with an array of Mexican Puccinia triticina races. Variation in seedling infection types of the cultivars was compared with that of the testers, and genes conferring low infection types were postulated. In total, nine named genes, Lr1 (in 13 cultivars), Lr3 (12), Lr3bg (2), Lr10 (1), Lr13 (4), Lr14a (1), Lr16 (49), Lr23 (9), and Lr26 (81), were identified. Thirty-one cultivars displayed intermediate reactions to one or more races that could not be attributed to any named gene. Twenty-eight spring cultivars were also evaluated at two field sites in Mexico using two common races. About half of them displayed good to moderate adult resistance that may be partly due to the presence of slow rusting gene Lr34 in at least seven cultivars. Diversity in adult plant responses of these wheats indicated the presence of additional slow rusting genes. Presence of 1B.1R translocation in 12 wheat cultivars, supposedly derived from intergeneric crosses involving T. durum, Haynaldia villosa, and Avena fatua, indicated that their pedigrees were incorrect.


Genome ◽  
2006 ◽  
Vol 49 (8) ◽  
pp. 977-990 ◽  
Author(s):  
H M William ◽  
R P Singh ◽  
J Huerta-Espino ◽  
G Palacios ◽  
K Suenaga

Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' × 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.Key words: Puccinia triticina, Puccinia striiformis, Triticum aestivum, bulked segregant analysis, single chromosome recombinant lines, linkage mapping, adult plant resistance.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yuli Jin ◽  
Fengyu Shi ◽  
Weihua Liu ◽  
Xiaoyi Fu ◽  
Tiantian Gu ◽  
...  

Powdery mildew and leaf rust, caused by Blumeria graminis f. sp. tritici (Bgt) and Puccinia triticina (Pt), respectively, are widespread diseases of wheat worldwide. Utilizing resistant cultivars is considered as the most economical, environmental-friendly, and effective method to control these diseases. In the present study, a collection of 2,978 wheat accessions consisting of 1,394 advanced breeding lines, 1,078 Chinese cultivars, 291 introduced cultivars, 132 lines containing alien chromosomes, and 83 landraces was tested for reactions to powdery mildew and leaf rust. The results indicated that 659 (22.1%) wheat accessions were highly resistant to a widely prevalent Bgt isolate, E09, at the seedling stage, and 390 were consistently resistant to the mixture of Bgt isolates at the adult-plant stage. Meanwhile, 63 (2.1%) accessions were highly resistant to leaf rust at the adult-plant stage, of which 54 were resistant to a predominant and highly virulent Pt race, THTT, at the seedling stage. Notably, 17 accessions were resistant to both powdery mildew and leaf rust. To detect known genes for resistance to powdery mildew and leaf rust, these accessions were tested with gene-specific or tightly linked markers for seven Pm genes (Pm2, Pm4, Pm5, Pm6, Pm8, Pm21, and Pm24) and ten Lr genes (Lr1, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Lr34, Lr37, and Lr46). Of the 659 powdery mildew-resistant accessions, 328 might carry single Pm genes and 191 carry combined Pm genes. Pm2 was detected at the highest frequency of 59.6%, followed by Pm8, Pm6, Pm21, Pm4, and Pm5, while Pm24 was not detected. Besides, 139 accessions might contain unknown Pm genes different from those tested in this study. In the 63 accessions resistant leaf rust, four Lr genes (Lr1, Lr10, Lr26, and Lr34) were detected in 41 accessions either singly or in combination, while six genes (Lr9, Lr19, Lr20, Lr24, Lr37, and Lr46) were not detected. Twenty-two accessions might contain unknown Lr genes different from those tested in this study. This study not only provided important information for rationally distributing resistance genes in wheat breeding programs, but also identified resistant germplasm that might have novel genes to enrich the diversity of resistance sources.


2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


Plant Disease ◽  
2021 ◽  
Author(s):  
Subhash Chander Bhardwaj ◽  
Subodh Kumar ◽  
Om Prakash Gangwar ◽  
Pramod Prasad ◽  
Prem Lal Kashyap ◽  
...  

Wheat is the second most cultivated cereal in the world and is equally important in India. Leaf (brown) rust, caused by Puccinia triticina, was most prevalent among the three rusts in all the wheat-growing areas of India, Bhutan, and Nepal during 2016 to 2019. Leaf rust samples from wheat crops in these countries were pathotyped using the wheat differential genotypes and binomial Indian system of nomenclature. To facilitate international communication, each pathotype identified was also tested on the North American differentials. A total of 33 pathotypes were identified from 1,086 samples, including 3 new pathotypes, 61R47 (162-5 = KHTDM) and 93R49 (49 = NHKTN) from India and 93R57 (20-1 = NHKTL) from Nepal. Two pathotypes, 121R60-1 (77-9/52 = MHTKL) and 121R63-1 (77-5 = THTTM), accounted for 79.46% of the population. Virulence on Lr19 was identified in 0.27% of the samples and from Nepal only. The proportion of pathotype 121R60-1 (77-9 = MHTKL) increased during these years to 57.55%. Virulence was not observed to Lr9, Lr24, Lr25, Lr28, Lr32, Lr39, Lr45, and Lr47 in the population of the Indian subcontinent. Eighteen polymorphic simple sequence repeat (SSR) primer pairs tested on the isolates amplified 48 alleles with an average of 2.66 alleles per primer pair. Based on SSR genotyping, these pathotypes could be grouped into two clades with further two subclades each. Many of the Lr genes present in Indian wheat germplasm (Lr1, Lr3a, Lr10, Lr11, Lr14a, Lr15, Lr16, Lr17, Lr20, Lr23, and Lr26) were ineffective to a majority of the pathotypes. Most of these varieties possessed a high degree of leaf rust resistance. The field resistance of wheat varieties could be attributed to the interaction of genes, unknown resistance, or adult plant resistance.


Sign in / Sign up

Export Citation Format

Share Document