scholarly journals Effect of Leaf Rust on Grain Yield and Yield Traits of Durum Wheats with Race-Specific and Slow-Rusting Resistance to Leaf Rust

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1065-1072 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
J. Crossa ◽  
J. Yuen ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum) in many countries. We compared the effectiveness of different types of resistance in International Maize and Wheat Improvement Center-derived durum wheat germ plasm for protecting grain yield and yield traits. In all, 10 durum wheat lines with race-specific resistance, 18 with slow-rusting resistance, and 2 susceptible were included in two yield loss trials sown on different planting dates in Mexico with and without fungicide protection under high disease pressure. Eight genotypes with race-specific resistance were immune to leaf rust. Durum wheat lines with slow-rusting resistance displayed a range of severity responses indicating phenotypic diversity. Mean yield losses for susceptible, race-specific, and slow-rusting genotypes were 51, 5, and 26%, respectively, in the normal sowing date trial and 71, 11, and 44% when sown late. Yield losses were associated mainly with a reduction in biomass, harvest index, and kernels per square meter. Slow-rusting durum wheat lines with low disease levels and low yield losses, as well as genotypes with low yield losses despite moderate disease levels, were identified. Such genotypes can be used for breeding durum wheat genotypes with higher levels of resistance and negligible yield losses by using strategies that previously have been shown to be successful in bread wheat.

Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 703-708 ◽  
Author(s):  
R. P. Singh ◽  
J. Huerta-Espino ◽  
W. Pfeiffer ◽  
P. Figueroa-Lopez

Durum wheat (Triticum turgidum var. durum) is the main irrigated winter crop in northwestern Mexico. Historically, leaf rust, caused by Puccinia triticina, had not induced significant losses to durum production in the area until 2001. That year, a new race, designated as BBG/BN, was detected that caused the most widely grown cultivar, Altar C84, which had remained resistant for 16 years, to become susceptible. Other recommended cultivars also became either moderately susceptible or susceptible. Detailed characterization of avirulence/virulence characteristics on Lr genes indicated that this race possibly did not evolve from the older races, but may have been introduced. Rust epidemics during the 2000-2001, 2001-2002, and 2002-2003 crop seasons have caused estimated losses of at least US$32 million. Although a majority of cultivars from 31 different countries, including the United States and Canada, and most of CIMMYT's durum wheat germ plasm were highly susceptible, diversity for both race-specific resistance and moderate levels of slow rusting resistance were identified. Jupare C2001, a resistant cultivar released in 2001, showed high levels of resistance and negligible losses in grain yield in a trial where Altar C84 suffered over 27% losses.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ali Mansouri ◽  
Bachir Oudjehih ◽  
Abdelkader Benbelkacem ◽  
Zine El Abidine Fellahi ◽  
Hamenna Bouzerzour

Relationships among agronomic traits and grain yield were investigated in 56 genotypes of durum wheat (Triticum durumDesf.). The results indicated the presence of sufficient variability nearly for all measured traits. Heritability and expected genetic gain varied among traits. Aboveground biomass, harvest index, and spike number were the most grain yield-influencing traits. Early genotypes showed above-average grain and biological yields, spike number, and lower canopy temperature. Assessed genotypes were clustered into three groups which differed mainly for biological, economical, straw, and grain yields, on the one hand, and plant height, chlorophyll content, and canopy temperature, on the other hand. Selection for direct use from clusters carrying best combinations of yield-related traits and crosses to be made between genotypes belonging to contrasted clusters were suggested to generate more variability. Selection preferentially for spike number, biological yield, harvest index, and canopy temperature to accumulate favorable alleles in the selected entries for future uses is suggested.


2013 ◽  
Vol 64 (10) ◽  
pp. 957 ◽  
Author(s):  
S. Dura ◽  
M. Duwayri ◽  
M. Nachit ◽  
F. Al Sheyab

Durum wheat is one of the most important staple food crops, grown mainly in the Mediterranean region where its productivity is drastically affected by salinity. The objective of this study was to identify markers associated with grain yield and its related traits under saline conditions. A population of 114 F8 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between Belikh2 (salinity-tolerant variety) and Omrabi5 (less salinity tolerant) was grown under non-saline and saline conditions in a glasshouse. Phenotypic data of the RILs and parental lines were measured for 15 agronomic traits. Association of 96 simple sequence repeat (SSR) loci covering all 14 chromosomes with 15 agronomic traits was analysed with a mixed linear model. In total, 49 SSR loci were significantly associated with these traits. Under saline conditions, 12 markers were associated with phenological traits and 19 markers were associated with yield and yield components. Marker alleles from Belikh2 were associated with a positive effect for the majority of markers associated with yield and yield components. Under saline condition, five markers (Xwmc182, Xwmc388, Xwmc398, Xbarc61, and Xwmc177) were closely linked with grain yield, located on chromosomes 2A, 3A, 3B, 4B, 5A, 6B, and 7A. These markers could be used for marker-assisted selection in durum wheat breeding under saline conditions.


2014 ◽  
Vol 74 (4) ◽  
pp. 432-437 ◽  
Author(s):  
Samia Berraies ◽  
Mohamed Salah Gharbi ◽  
Salah Rezgui ◽  
Amor Yahyaoui

Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 977-982 ◽  
Author(s):  
G. J. Hollaway ◽  
M. L. Evans ◽  
H. Wallwork ◽  
C. B. Dyson ◽  
A. C. McKay

In southeastern Australia, Fusarium crown rot, caused by Fusarium culmorum or F. pseudograminearum, is an increasingly important disease of cereals. Because in-crop control options are limited, it is important for growers to know prior to planting which fields are at risk of yield loss from crown rot. Understanding the relationships between crown rot inoculum and yield loss would assist in assessing the risk of yield loss from crown rot in fields prior to planting. Thirty-five data sets from crown rot management experiments conducted in the states of South Australia and Victoria during the years 2005 to 2010 were examined. Relationships between Fusarium spp. DNA concentrations (inoculum) in soil samples taken prior to planting and disease development and grain yield were evaluated in seasons with contrasting seasonal rainfall. F. culmorum and F. pseudograminearum DNA concentrations in soil prior to planting were found to be positively related to crown rot expression (stem browning and whiteheads) and negatively related to grain yield of durum wheat, bread wheat, and barley. Losses from crown rot were greatest when rainfall during September and October (crop maturation) was below the long-term average. Losses from crown rot were greater in durum wheat than bread wheat and least in barley. Yield losses from F. pseudograminearum were similar to yield losses from F. culmorum. Yield loss patterns were consistent across experiments and between states; therefore, it is reasonable to expect that similar relationships will occur over broad geographic areas. This suggests that quantitative polymerase chain reaction technology and soil sampling could be powerful tools for assessing crown rot inoculum concentrations prior to planting and predicting the risk of yield loss from crown rot wherever this disease is an issue.


2010 ◽  
Vol 90 (3) ◽  
pp. 353-357 ◽  
Author(s):  
A K Singh ◽  
J M Clarke ◽  
R M DePauw ◽  
R E Knox ◽  
F R Clarke ◽  
...  

Enterprise durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.] is adapted to the durum production area of the Canadian prairies. It combines high grain yield, grain protein concentration, test weight, yellow grain pigment, and low grain cadmium concentration. Enterprise has slightly weaker straw strength, similar days to maturity, and improved fusarium head blight resistance compared with strongfield. Key words: Triticum turgidum L. subsp. durum (Desf.) Husn., durum wheat, cultivar description, grain yield, yellow pigment, cadmium


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2357
Author(s):  
Lorenzo Cotrozzi ◽  
Giacomo Lorenzini ◽  
Cristina Nali ◽  
Claudia Pisuttu ◽  
Silvia Pampana ◽  
...  

Durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn) is a staple crop of the Mediterranean countries, where more frequent waterlogging events are predicted due to climate change. However, few investigations have been conducted on the physiological and agronomic responses of this crop to waterlogging. The present study provides a comprehensive evaluation of the effects of two waterlogging durations (i.e., 14 and 35 days) on two durum wheat cultivars (i.e., Svevo and Emilio Lepido). An integrated analysis of an array of physiological, biochemical, biometric, and yield parameters was performed at the end of the waterlogging events, during recovery, and at physiological maturity. Results established that effects on durum wheat varied depending on waterlogging duration. This stress imposed at tillering impaired photosynthetic activity of leaves and determined oxidative injury of the roots. The physiological damages could not be fully recovered, subsequently slowing down tiller formation and crop growth, and depressing the final grain yield. Furthermore, differences in waterlogging tolerance between cultivars were discovered. Our results demonstrate that in durum wheat, the energy maintenance, the cytosolic ion homeostasis, and the ROS control and detoxification can be useful physiological and biochemical parameters to consider for the waterlogging tolerance of genotypes, with regard to sustaining biomass production and grain yield.


Sign in / Sign up

Export Citation Format

Share Document