scholarly journals Yield Loss in Cereals, Caused by Fusarium culmorum and F. pseudograminearum, Is Related to Fungal DNA in Soil Prior to Planting, Rainfall, and Cereal Type

Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 977-982 ◽  
Author(s):  
G. J. Hollaway ◽  
M. L. Evans ◽  
H. Wallwork ◽  
C. B. Dyson ◽  
A. C. McKay

In southeastern Australia, Fusarium crown rot, caused by Fusarium culmorum or F. pseudograminearum, is an increasingly important disease of cereals. Because in-crop control options are limited, it is important for growers to know prior to planting which fields are at risk of yield loss from crown rot. Understanding the relationships between crown rot inoculum and yield loss would assist in assessing the risk of yield loss from crown rot in fields prior to planting. Thirty-five data sets from crown rot management experiments conducted in the states of South Australia and Victoria during the years 2005 to 2010 were examined. Relationships between Fusarium spp. DNA concentrations (inoculum) in soil samples taken prior to planting and disease development and grain yield were evaluated in seasons with contrasting seasonal rainfall. F. culmorum and F. pseudograminearum DNA concentrations in soil prior to planting were found to be positively related to crown rot expression (stem browning and whiteheads) and negatively related to grain yield of durum wheat, bread wheat, and barley. Losses from crown rot were greatest when rainfall during September and October (crop maturation) was below the long-term average. Losses from crown rot were greater in durum wheat than bread wheat and least in barley. Yield losses from F. pseudograminearum were similar to yield losses from F. culmorum. Yield loss patterns were consistent across experiments and between states; therefore, it is reasonable to expect that similar relationships will occur over broad geographic areas. This suggests that quantitative polymerase chain reaction technology and soil sampling could be powerful tools for assessing crown rot inoculum concentrations prior to planting and predicting the risk of yield loss from crown rot wherever this disease is an issue.

2010 ◽  
Vol 46 (No. 1) ◽  
pp. 21-26 ◽  
Author(s):  
V. Šíp ◽  
J. Chrpová ◽  
O. Veškrna ◽  
L. Bobková

Reactions to artificial infection with Fusarium graminearum isolates and a new fungicide Swing Top were studied in nine winter wheat cultivars evaluated in field experiments at two sites for three years for expression of symptoms, deoxynivalenol (DON) content in grain and grain yield. The results demonstrate a pronounced and relatively stable effect of cultivar resistance on reducing head blight, grain yield losses and contamination of grain by the mycotoxin DON. It is advantageous that the moderate level of resistance to Fusarium head blight (FHB) was detected also in two commonly grown Czech cultivars Sakura and Simila. Average fungicide efficacy for DON was 49.5% and 63.9% for a reduction in yield loss, however, it was found highly variable in different years and sites. The joint effect of cultivar resistance and fungicide treatment was 86.5% for DON and even 95.4% for reducing the yield loss. A very high risk was documented for susceptible cultivars and also the effects of medium responsive cultivars were found to be highly variable in different environments and therefore not guaranteeing sufficient protection against FHB under different conditions.


2014 ◽  
Vol 65 (1) ◽  
pp. 61 ◽  
Author(s):  
Mohsin S. Al-Fahdawi ◽  
Jason A. Able ◽  
Margaret Evans ◽  
Amanda J. Able

Durum wheat (Triticum turgidum ssp. durum) is susceptible to Fusarium pseudograminearum and sensitive to zinc (Zn) deficiency in Australian soils. However, little is known about the interaction between these two potentially yield-limiting factors, especially for Australian durum varieties. The critical Zn concentration (concentration of Zn in the plant when there is a 10% reduction in yield) and degree of susceptibility to F. pseudograminearum was therefore determined for five Australian durum varieties (Yawa, Hyperno, Tjilkuri, WID802, UAD1153303). Critical Zn concentration averaged 24.6 mg kg–1 for all durum varieties but differed for the individual varieties (mg kg–1: Yawa, 21.7; Hyperno, 22.7; Tjilkuri, 24.1; WID802, 24.8; UAD1153303, 28.7). Zinc efficiency also varied amongst genotypes (39–52%). However, Zn utilisation was similar amongst genotypes under Zn-deficient or Zn-sufficient conditions (0.51–0.59 and 0.017–0.022 g DM μg–1 Zn, respectively). All varieties were susceptible to F. pseudograminearum but the development of symptoms and detrimental effect on shoot biomass and grain yield were significantly greater in Tjilkuri. Even though crown rot symptoms may still be present, the supply of adequate Zn in the soil helped to maintain biomass and grain yield in all durum varieties. However, the extent to which durum varieties were protected from plant growth penalties due to crown rot by Zn treatment was genotype-dependent.


2020 ◽  
Author(s):  
Gururaj Kadkol ◽  
Jess Meza ◽  
Steven Simpfendorfer ◽  
Steve Harden ◽  
Brian Cullis

AbstractTolerance to the cereal disease Fusarium crown rot (FCR) was investigated in a set of 34 durum wheat genotypes, with Suntop, (bread wheat) and EGA Bellaroi (durum) as tolerant and intolerant checks, in a series of replicated field trials over four years with inoculated (FCR-i) and non-inoculated (FCR-n) plots of the genotypes. The genotypes included conventional durum lines and lines derived from crossing durum with 2-49, a bread wheat line with the highest level of partial resistance to FCR. A split plot trial design was chosen to optimize the efficiency for the prediction of FCR tolerance for each genotype. A multi-environment trial (MET) analysis was undertaken which indicated that there was good repeatability of FCR tolerance across years. Based on an FCR tolerance index, Suntop was the most tolerant genotype and EGA Bellaroi was very intolerant, but many durum wheats had FCR tolerance indices which were comparable to Suntop. These included some conventional durum lines, V101030, TD1702, V11TD013*3X-63 and DBA Bindaroi, as well as genotypes from crosses with 2-49 (V114916 and V114942). The correlation between FCR tolerance and FCR-n yield predictions was moderately negative indicating it could be somewhat difficult to develop high yielding FCR-tolerant genotypes. However, FCR tolerance showed a positive correlation with FCR-i yield predictions in seasons of high disease expression indicating it could be possible to screen for FCR tolerance using only FCR-i treatments. These results are the first demonstration of genetic diversity in durum germplasm for FCR tolerance and they provide a basis for breeding for this trait.


2012 ◽  
Vol 160 (7-8) ◽  
pp. 412-417 ◽  
Author(s):  
Yaxi Liu ◽  
Jun Ma ◽  
Wei Yan ◽  
Guijun Yan ◽  
Meixue Zhou ◽  
...  

Author(s):  
Soleman M. Al-Otayk

The present study was carried out to evaluate agronomic traits and assessment of genetic variability of some wheat genotypes at Qassim region, Saudi Arabia', during 2010/11 and2011/12 seasons. Fourteen wheat genotypes including five bread wheat and nine durum wheat genotypes were evaluated in randomized complete block design with three replications. The genotypes were evaluated for ten different yield contributing characters viz., days to heading, days to maturity, grain filling period, grain filling rate, plant height, number of spikes m-2, kernels spike-1, 1000-kernel weight, grain yield and straw yield. The combined analysis of variance indicated the presence of significant differences between years for most characters. The genotypes exhibited significant variation for all the characters studied indicating considerable amount of variation among genotypes for each character. Maximum coefficient of variation was observed for number of spikes m-2 (17%), while minimum value was found for days to maturity. Four genotypes produced maximum grain yield and statistically similar, out of them two bread wheat genotypes (AC-3 and SD12) and the other two were durum wheat (AC-5 and BS-1). The genotypes AC-3, AC-5 and BS-1 had higher grain yield and stable in performance across seasons. The estimation of phenotypic coefficient of variation in all the traits studied was greater than those of the genotypic coefficient of variation. High heritability estimates (> 0.5) were observed for days to heading, days to maturity, and plant height, while the other characters recorded low to moderate heritability. The high GA % for plant height and days to heading (day) was accompanied by high heritability estimates, which indicated that heritability is mainly due to genetic variance. Comparatively high expected genetic advances were observed for grain yield components such as number of kernels spike-1 and 1000-kernel weight. Grain yield had the low heritability estimate with a relatively intermediate value for expected genetic advance. The results of principle component analysis (PCA) indicated that the superior durum wheat genotypes for grain yield in the two seasons (AC-5 and BS-1) are clustered in group II (Fig. 2). Also, the superior two bread wheat genotypes (AC-3 and SD12) were in group I. Therefore, it could be future breeding program to develop new high yielding genotypes in bread and durum wheat.


1985 ◽  
Vol 25 (4) ◽  
pp. 922 ◽  
Author(s):  
D Lemerle ◽  
AR Leys ◽  
RB Hinkley ◽  
JA Fisher

Twelve spring wheat cultivars were tested in southern New South Wales for their tolerances to the recommended rates and three times the recommended rates of trifluralin, pendimethalin, tri-allate and chlorsulfuron. Recommended rates of these herbicides did not affect the emergence or grain yield of any cultivar. However, differences between cultivars in their tolerances to trifluralin, pendimethalin and chlorsulfuron at three times the recommended rate were identified. The extent of the reduction in emergence and/or grain yield varied with herbicide and season, and there was also a herbicidexseason interaction. Durati, Songlen and Tincurrin were the most susceptible cultivars to trifluralin, and Teal was the most tolerant. Yield losses from trifluralin were more severe in 1979 than in 1980 or 1981. The differential between cultivars treated with pendimethalin was smaller and more variable; Tincurrin was the only cultivar with a yield reduction in more than one season. Durati, Songlen and Shortim were the only cultivars affected by chlorsulfuron. A reduction in crop emergence of a cultivar treated with trifluralin or pendimethalin did not correlate consistently with any grain yield loss, and reductions in emergence were always greater than yield loss.


2006 ◽  
Vol 57 (2) ◽  
pp. 227 ◽  
Author(s):  
Daniel F. Calderini ◽  
M. P. Reynolds ◽  
G. A. Slafer

Source limitation during grain filling is important for both management and breeding strategies of grain crops. There is little information on the sensitivity of grain weight of temperate cereals to variations in source–sink ratios, and no studies are available on the comparative behaviour of temperate cereals growing together in the same experiment. The objective of the current study was to evaluate, under field conditions, the response of grain weight to different source–sink ratios during grain filling in high-yielding cultivars of bread wheat, durum wheat, and triticale at 2 contrasting locations. Two experiments were carried out at C. Obregon and El Batan in Mexico. In each location, 6 genotypes (2 bread wheat, 2 durum wheat, 2 triticale) were evaluated. A week after anthesis, 2 source–sink (control and halved spikes) treatments were imposed. Location and genotype significantly (P < 0.01) affected grain yield and components. Significant grain weight increases (P < 0.05) were found only in 2 cases in El Batan. The highest response of 17% was found in triticale, with less than 10% in most of the other genotypes. The effect of genotype and location is discussed.


2014 ◽  
Vol 74 (4) ◽  
pp. 432-437 ◽  
Author(s):  
Samia Berraies ◽  
Mohamed Salah Gharbi ◽  
Salah Rezgui ◽  
Amor Yahyaoui

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1065-1072 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
J. Crossa ◽  
J. Yuen ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum) in many countries. We compared the effectiveness of different types of resistance in International Maize and Wheat Improvement Center-derived durum wheat germ plasm for protecting grain yield and yield traits. In all, 10 durum wheat lines with race-specific resistance, 18 with slow-rusting resistance, and 2 susceptible were included in two yield loss trials sown on different planting dates in Mexico with and without fungicide protection under high disease pressure. Eight genotypes with race-specific resistance were immune to leaf rust. Durum wheat lines with slow-rusting resistance displayed a range of severity responses indicating phenotypic diversity. Mean yield losses for susceptible, race-specific, and slow-rusting genotypes were 51, 5, and 26%, respectively, in the normal sowing date trial and 71, 11, and 44% when sown late. Yield losses were associated mainly with a reduction in biomass, harvest index, and kernels per square meter. Slow-rusting durum wheat lines with low disease levels and low yield losses, as well as genotypes with low yield losses despite moderate disease levels, were identified. Such genotypes can be used for breeding durum wheat genotypes with higher levels of resistance and negligible yield losses by using strategies that previously have been shown to be successful in bread wheat.


Sign in / Sign up

Export Citation Format

Share Document