scholarly journals First Report of Charcoal Rot Caused by Macrophomina phaseolina on Mungbean in China

Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 872-872 ◽  
Author(s):  
J. Q. Zhang ◽  
Z. D. Zhu ◽  
C. X. Duan ◽  
X. M. Wang ◽  
H. J. Li

Mungbean (Vigna radiata L.), an important leguminous food crop in China, is popularly grown in arid regions. The total area of mungbean production is 8.0 × 105 ha. In August and September 2010, wilted symptoms were observed in mungbean plants in Yulin, Shaanxi Province and Datong, Shanxi Province. Infected plants had silvery gray coloration of stems and lateral branching with senesced leaves still attached to the plant. Dark brown necrotic areas were observed on the exterior of the taproot underneath the epidermis and in the pith of the lower stems of wilted plants. Black spherical microsclerotia, 43.9 μm, were present in infected plant tissues. Six fungal isolates were cultured on potato dextrose agar at 25°C and the mycelium was initially hyaline but later became gray. Black microsclerotia, 60 to 80 × 75 to 123 μm, were observed in culture after 2 to 7 days of incubation. On the basis of field symptoms, colony color, and the size of microsclerotia, the fungus was identified as Macrophomina phaseolina (Tassi) Goid (3). To confirm the morphological identification, the rDNA internal transcribed spacer (ITS) regions of the six isolates were amplified with universal primers ITS1 and ITS4. The resulting ITS sequences of the six isolates (GenBank Accession Nos. HQ660589, HQ660590, HQ660591, HQ660592, HQ660593, and HQ660594) were aligned in GenBank, which showed 97 to 99% identity with 60 M. phaseolina isolates (e.g., Accession Nos. GU046867, FJ415067, and FJ960441). Using the PCR primers MpKF1 (5′-CCGCCAGAGGACTATCAAAC-3′) and MaKR1 (5′-CGTCCGAAGCGAGGTGTATT-3′) specific for M. phaseolina (1), a 350-bp PCR fragment was obtained, indicating that these isolates were M. phaseolina. Pathogenicity tests of six isolates were performed by inoculation of 3-week-old seedlings of cv. Zhonglv 8 using the hypocotyl inoculation technique, respectively (2). Each isolate was transferred to petri dishes containing PDA 2 days prior to inoculation. On the day of inoculation, an inoculum slurry was prepared by cutting agar with the pathogen into small strips and passing the strips through a 5-syringe until uniform. A small quantity of inoculum extruded into the vertical cut in each hypocotyl of at least eight seedlings in each pot, and the PDA was used as the control to extrude into the vertical cut in each hypocotyl of at least eight seedlings in another pot. The inoculated and control plants were incubated in the mist chamber at 25°C and 90 to 100% relative humidity for 48 h before growing in a greenhouse at 30°C. Six days after inoculation, all inoculated plants, wilted or dead, showed dark brown-toblack lesions. No symptoms were observed on the control plants. For each isolate tested, M. phaseolina was reisolated from inoculated plants, but was not isolated from the control plants. The fungus has been detected in 29 plant species of 23 genera in China, including the major crops Arachis hypogaea, Helianthus annuus, and Glycine max. Although M. phaseolina has caused great yield reduction of mungbean in many areas of Asia, to our knowledge, this fungus as a causal agent of mungbean charcoal rot has not previously been reported in China. Reference: (1) B. K. Babu et al. Mycologia 99:797, 2007. (2) D. L. Pazdernik et al. Plant Dis. 81:1112, 1997. (3) G. S. Smith and T. D.Wyllie. Charcoal rot. Page 29 in: Compendium of Soybean Diseases. 4th ed. G. L. Hartmann et al., eds. The American Phytopathological Society, St. Paul, MN, 1999.

Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 141-141 ◽  
Author(s):  
C. J. Jacob ◽  
C. Krarup ◽  
G. A. Díaz ◽  
B. A. Latorre

A severe outbreak of charcoal rot was observed in cantaloupe melon (Cucumis melo L.) in the summer of 2011 to 2012 in Curacaví Valley, Chile. Prior to harvest, of 72 plants per cultivar, charcoal rot prevalence varied from 32% to 82% in cvs. Colima, Charantias, Navigator, Origami, Otero, and Samoa. Symptoms were wilting and leaf browning associated with water-soaked lesions at the base of the crown with amber to dark brown exudates. Lesions dried out progressively, turned tan, and cracked. Affected plants declined and died before harvest. Reddish fruit decay was observed. Symptomatic stem and root samples (n = 97) were collected, surface disinfected (96% ethanol, 30 s), plated on PDA acidified with 0.5 ml/liter of 92% lactic acid (APDA), and incubated at 20 ± 1°C. A white, fast-growing mycelium was obtained that turned gray to black after 7 days due to the presence of spherical to oblong black microsclerotia 136 ± 52 μm (n = 80) in diameter. On the basis of colony morphology and microsclerotia, 57 isolates (59%), obtained from 97 melon samples, were tentatively identified as Macrophomina phaseolina (Tassi) Goid. (2,3). The morphological identification of four isolates M1HB-B, M2CO-B, M3CH-R, and M4OT-B (GenBank Accession Nos. JX203630, JX203631, JX203632, and JX203633) was confirmed by sequencing of the internal transcribed spacer region (ITS1-5.8S-ITS2) of rDNA, using primers ITS4 and ITS5, with >99% similarity with the sequences of M. phaseolina (GenBank Accession No. HQ660592) (4). Pathogenicity tests were conducted with isolates M1HB-B, M2CO-B, M3CH-R, and M4OT-B on melon fruits cvs. Colima, Origami, Charantias, and Diva. Four mature melon fruits per cultivar per isolate were surface disinfected with 0.5% sodium hypochlorite for 2 min before inserting a mycelium plug (19 mm2) in a 6 mm diameter hole made with a sterile cork borer. An equal number of perforated fruits in which a sterile agar plug was inserted were left as non-inoculated controls. After 8 days of incubation at 20°C, inoculated fruits developed a spherical, reddish, soft necrotic lesion of 15 to 20 mm in diameter in the pulp. Non-inoculated fruits remained symptomless. The pathogenicity of the four isolates was also studied in 3-month-old melon plants (n = 4) cvs. Colima and Navigator. Plants were inoculated by inserting a mycelial plug (9 mm2) underneath the epidermis of the crown, 5 cm above the soil level. The inoculation site was immediately wrapped with Parafilm to avoid dehydration. An equal number of non-inoculated, but injured plants, treated with a sterile agar plug, were left as controls. After 21 days of incubation under greenhouse conditions (17 ± 5.5°C), all inoculated plants developed water-soaked to dry necrotic lesions, 20 to 70 mm long, yellow to tan in color. No symptoms were obtained in non-inoculated controls. M. phaseolina was reisolated in 84% and 100% of the inoculated plants and fruits, respectively. To our knowledge, this study is the first report of charcoal rot in cantaloupe melon in Chile, previously found on watermelon and melon group inodorus (1). Charcoal rot appears as an emerging disease that aggressively affects current cantaloupe melon cultivars in central Chile. References: (1) G. Apablaza. Cien. Inv. Agr. 20:101, 1993. (2) B. D. Bruton and E. V. Wann. Charcoal rot. Page 9 in: Compendium of Cucurbit Diseases. T. A. Zitter, D. L. Hopkins, and C. E. Thomas, eds. APS, St. Paul, MN, 1996. (3) S. Kaur et al. Crit. Rev. Microbiol. 38:136, 2012. (4) J. Q. Zhang et al. Plant Dis. 95:872, 2011.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 645 ◽  
Author(s):  
Hamed K. Abbas ◽  
Nacer Bellaloui ◽  
Cesare Accinelli ◽  
James R. Smith ◽  
W. Thomas Shier

Charcoal rot disease, caused by the fungus Macrophomina phaseolina, results in major economic losses in soybean production in southern USA. M. phaseolina has been proposed to use the toxin (-)-botryodiplodin in its root infection mechanism to create a necrotic zone in root tissue through which fungal hyphae can readily enter the plant. The majority (51.4%) of M. phaseolina isolates from plants with charcoal rot disease produced a wide range of (-)-botryodiplodin concentrations in a culture medium (0.14–6.11 µg/mL), 37.8% produced traces below the limit of quantification (0.01 µg/mL), and 10.8% produced no detectable (-)-botryodiplodin. Some culture media with traces or no (-)-botryodiplodin were nevertheless strongly phytotoxic in soybean leaf disc cultures, consistent with the production of another unidentified toxin(s). Widely ranging (-)-botryodiplodin levels (traces to 3.14 µg/g) were also observed in the roots, but not in the aerial parts, of soybean plants naturally infected with charcoal rot disease. This is the first report of (-)-botryodiplodin in plant tissues naturally infected with charcoal rot disease. No phaseolinone was detected in M. phaseolina culture media or naturally infected soybean tissues. These results are consistent with (-)-botryodiplodin playing a role in the pathology of some, but not all, M. phaseolina isolates from soybeans with charcoal rot disease in southern USA.


2021 ◽  
Vol 84 (2) ◽  
pp. 459-465
Author(s):  
Marco Masi ◽  
Francisco Sautua ◽  
Roukia Zatout ◽  
Stefany Castaldi ◽  
Lorenzo Arrico ◽  
...  

2019 ◽  
Vol 82 (2) ◽  
pp. 325-330 ◽  
Author(s):  
WANWAN LIU ◽  
XIAONAN WANG ◽  
JING TAO ◽  
BANGSHENG XI ◽  
MAN XUE ◽  
...  

ABSTRACT This study aimed to establish a multiplex PCR detection system mediated by “universal primers,” which would be able to determine whether mutton meat contained nonmutton ingredients from rats, foxes, and ducks. Based on the sequence variation of specific mitochondrial genes, nine different multiplex PCR primers were designed, and four kinds of meat products were rapidly identified by electrophoresis using an optimized multiplex PCR system based on the molecular weight differences of the amplified products. Multiplex PCR applications optimized for meat food source from food samples for testing was used to verify the accuracy of the identification method. The results showed that the primers in multiple PCR system mediated by universal primers could be used for the rapid identification of rat, fox, duck, and sheep meat in mutton products, and the detection sensitivity could reach 0.05 ng/μL. The identification of food samples validated the practical value of this method. Therefore, a multiplex PCR system mediated by universal primers was established, which can be used to quickly identify the origin of animal ingredients from rats, foxes, and ducks in mutton products.


2003 ◽  
Vol 28 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Álvaro M. R. Almeida ◽  
Lilian Amorim ◽  
Armando Bergamin Filho ◽  
Eleno Torres ◽  
José R. B. Farias ◽  
...  

The increase in incidence of charcoal rot caused by Macrophomina phaseolina on soybeans (Glycine max) was followed four seasons in conventional and no-till cropping systems. In the 1997/98 and 2000/01 seasons, total precipitation between sowing and harvest reached 876.3 and 846.9 mm, respectively. For these seasons, disease incidence did not differ significantly between the no-till and conventional systems. In 1998/99 and 1999/00 precipitation totaled 689.9 and 478.3 mm, respectively. In 1998/99, in the no-till system, the disease incidence was 43.7% and 53.1% in the conventional system. In 1999/00 the final incidence was 68.7% and 81.2% for the no-till and conventional systems, respectively. For these two seasons, precipitation was lower than that required for soybean crops (840 mm), and the averages of disease incidence were significantly higher in the conventional system. The concentration of microsclerotia in soil samples was higher in samples collected in conventional system at 0 - 10 cm depth. However, analysis of microsclerotia in roots showed that in years with adequate rain no difference was detected. In dry years, however, roots from plants developed under the conventional system had significantly more microsclerotia. Because of the wide host range of M. phaseolina and the long survival times of the microsclerotia, crop rotation would probably have little benefit in reducing charcoal rot. Under these study conditions it may be a better alternative to suppress charcoal rot by using the no-till cropping system to conserve soil moisture and reduce disease progress.


2008 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
J. A. Wrather ◽  
J. G. Shannon ◽  
T. E. Carter ◽  
J. P. Bond ◽  
J. C. Rupe ◽  
...  

Charcoal rot caused by Macrophomina phaseolina is a common disease of many crops including common bean and soybean. Incidence and severity of charcoal rot are enhanced when plants are drought stressed. Resistance to this pathogen in some common bean genotypes was associated with drought tolerance. Resistance to M. phaseolina among soybean genotypes has not been identified, although a few have been rated moderately resistant based on less root tissue colonization by this pathogen compared to other genotypes. A few soybean genotypes have been rated as slow-wilt or drought-tolerant. The reaction of drought-tolerant soybean to M. phaseolina compared to intolerant or drought-sensitive genotypes has not been determined. Our objective was to determine if there were differences in root colonization by M. phaseolina between drought-tolerant and drought-sensitive soybean genotypes. Drought tolerance of the soybean genotypes and root colonization by M. phaseolina at the R6 and R8 stages of growth were not related in this study. Some drought-tolerant soybean genotypes may resist root colonization by M. phaseolina, but our results suggest that this is not true for all drought-tolerant genotypes. Accepted for publication 21 March 2008. Published 18 June 2008.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1286-1286 ◽  
Author(s):  
Beira H. Meressa ◽  
H. Heuer ◽  
H.-W. Dehne ◽  
J. Hallmann

Meloidogyne hapla is one of the most damaging plant-parasitic nematodes in temperate regions. This nematode has a wide host range with more than 500 plant taxa including roses. In Ethiopia, rose production has developed over the past 10 years to the second most important export market after coffee. Considering the high damage potential of M. hapla, infestation of roses in Ethiopia with this nematode could result in major economic losses. Therefore, awareness of this nematode species is extremely important. During two surveys conducted in August 2011 and April 2012, M. hapla was detected in soil samples from six out of nine rose producing farms located in the districts of Ziway, Holleta, Sebeta, and Menagesha. At infested farms, rose plants appeared stunted and less productive and often showed symptoms of chlorosis and wilting. Identification was based on morphological and morphometrical characters of females, males, and second-stage juveniles, which were all within the range of variability known for this species (4). Shape of juvenile stylet knobs, shape of male head, and perennial pattern of the females with characteristic punctuations between the anus and tail terminus were also typical for M. hapla. The morphological identification was confirmed by sequence analysis of the D2-D3 expansion segment of the 28S rDNA gene following amplification with the primers D2A (5′-ACAAGTACCGTGAGGGAAAGTT-3′) and D3B (5′-TCGGAAGGAACCAGCTACTA-3′) (1). PCR products were purified and sequenced at the Macrogene sequencing facility service (Amsterdam, The Netherlands). Sequences were deposited in GenBank (KJ645427 to 33). The sequences were compared with previously published sequences in NCBI database and showed 96 to 100% sequence similarity with M. hapla accession nos. GQ130139, DQ328685, KF430798, and DQ145641. Unfortunately, comparison of sequences did not provide further information about the origin of this Ethiopian population, if it is native to Ethiopia or was imported with infected plant material. To the best of our knowledge, this is the first record of M. hapla occurring in Ethiopia. M. hapla is known as a serious pest of roses in colder climate regions. In Africa, it was previously reported from Tanzania (3) and South Africa (2). Thus, it appears that this species has now become also established in Ethiopia at higher altitudes (1,400 to 2,100 m above sea level) within the urban hinterland of Addis Ababa. References: (1) Baldwin et al. Mol. Phy. Evol. 8:248, 1887. (2) J. H. O'Bannon. Institute Agri. Res. 29, 1975. (3) E. Onkendi and L. N. Moleleki. Eur. J. Pl. Pathol. 136:1, 2013. (4) A. G. Whitehead. Trans. Zool. Soc. Lon.31:263, 1968.


Plant Disease ◽  
2018 ◽  
Vol 102 (7) ◽  
pp. 1459 ◽  
Author(s):  
S. Hyder ◽  
A. S. Gondal ◽  
R. Ahmed ◽  
S. T. Sahi ◽  
A. Rehman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document