scholarly journals First Report of Buckeye Rot Caused by Phytophthora nicotianae in Tomato in New Mexico

Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 1029-1029 ◽  
Author(s):  
J. M. French ◽  
R. A. Stamler ◽  
J. J. Randall ◽  
N. P. Goldberg

Phytophthora nicotianae Breda de Haan was isolated from turning tomato fruit (Solanum lycopersicum L.) in August 2010 from a garden in central New Mexico. Symptoms typical of buckeye rot including brown, water-soaked, necrotic lesions with concentric rings were observed on three tomato fruit. Tissue from each fruit was surface sterilized and plated onto water agar and incubated at room temperature. After 72 h, colonies of Phytophthora (identified by the presence of coenocytic hyphae and papillate sporangia) were found and subcultured by hyphal tips to V8 agar amended with ampicillin (250 mg/liter), rifampicin (10 mg/liter), and pimaricin (0.2% wt/vol). The isolates of Phytophthora were identified as P. nicotianae based on morphological characteristics and DNA analysis. Sporangia were sharply papillate, noncaducous, and ovoid to spherical. The average sporangium size was 44.5 × 35.5 μm with a length-to-width ratio of 1.26. Chlamydospores, both terminal and intercalary, were spherical to ovoid and averaged 38.9 × 37.5 μm. PCR amplification and sequence analysis on three isolates from the infected tomato tissue was performed using primers ITS4 and ITS6 that amplify the 5.8S rDNA and ITSI and ITSII internal transcribed spacers (1,2). A band of approximately 890 bp was amplified and directly sequenced (GenBank Accession No. HQ711620). A BLAST search of the NCBI total nucleotide collection revealed a 100% similarity to multiple P. nicotianae isolates previously sequenced. Pathogenicity tests with sequenced P. nicotianae isolates were performed to confirm virulence on tomato fruit. Tomatoes were surface sterilized with 95% ethanol and 0.1 ml of a P. nicotianae zoospore suspension (10,000 zoospores/ml) or sterile water was pipetted onto the surface of the tomato fruit. After 5 days in a humidity chamber, all three inoculated tomatoes had expanding water-soaked, circular lesions and the negative control showed no disease symptoms. P. nicotianae was successfully reisolated from the inoculated tomato tissue and the ITS region was sequenced to confirm its identity. Although the disease has been reported in many other states since the early 1900s, to our knowledge, this is the first report of P. nicotianae causing disease on tomato in New Mexico. References: (1) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 283-283
Author(s):  
M. Shao ◽  
W. F. Du ◽  
D. C. Yu ◽  
P. Du ◽  
S. J. Ni ◽  
...  

Konjac (Amorphophallus) is an important economic crop widely used in health products and biomaterials in Asia (2). A serious foliage disease of Konjac was observed in Fuyuan County, Yunnan Province, China, in July 2012. The symptoms began with leaf color changes from light green to yellow, followed by discoloration on the stem base, plant wilting, bulb rotting, and ultimately plant death. Symptomatic tissues were cut into small pieces, surface-sterilized, and cultured on 20% V8 juice agar at 28°C. Five days after incubation, white fluffy colonies with the typical sporangium of Phytophthora sp. were observed from root and stem pieces. Isolates were identified as P. nicotianae based on morphological characteristics and DNA analysis. The growth rate of the colonies was 16 mm/d at 28°C. Sporangia were pyriform, ovoid to spherical, and papillate, and the dimensions of the 80 sporangia measured ranged from 23.7 to 60.4 × 19.4 to 45.7 μm (avg. 42.4 × 31.5 μm) with length-to-breadth ratios of 1.19 to 1.44 (avg. 1.34). The chlamydospores were spherical with a smooth surface, and their dimensions ranged from 20.3 to 47.3 × 18.9 to 45.9 μm (avg. 32.7 × 30.4 μm) (3). DNA was extracted from one colony containing spores and hyphae of the isolated P. nicotianae, and the nuclear ribosomal DNA internal transcribed spacer (ITS) region was amplified with primers ITS6 and ITS4 (4). The obtained 854-bp amplicon was purified and sequenced. NCBI BLAST retrieved a 100% identity with P. nicotianae (GenBank Accession No. KJ506732). A pathogenicity test of the isolated P. nicotianae was conducted in a greenhouse. After 7 days in a humidity-controlled greenhouse, all 10 inoculated plants showed similar symptoms as observed initially in the field, while control plants were symptomless. P. nicotianae was re-isolated from the inoculated stems, thus successfully completing Koch's postulates (1). To our knowledge, this is the first report of P. nicotianae as a pathogen of Konjac in China. References: (1) B. Alvarez-Rodriguez et al. Plant Dis. 97:1257, 2013. (2) H. Ban, et al. Plant Cell Rep. 28:1847, 2009. (3) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. APS Press, St. Paul, MN, 1996. (4) J. M. French et al. Plant Dis. 95:1028, 2011.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1065-1065
Author(s):  
J.-H. Huang ◽  
P.-J. Ann ◽  
Y.-H. Chiu ◽  
J.-N. Tsai

Taiwan cherry or Formosan cherry (Prunus campanulata Maxim.) is a beautiful ornamental tree that is native to Taiwan. In spring 2005, a severe disease was observed on 1- to 3-year-old seedlings of Taiwan cherry in a garden in Tungshih, Taichung, Taiwan. Infected plants showed symptoms of greenish water-soaked spots on leaves that became dark brown, 2 to 3 cm in diameter. Infected leaves withered and fell to the ground in 3 to 5 days and young shoots showed symptoms of withering and drooping. Infected roots showed symptoms of necrosis. Severely infected plants eventually died. A Phytophthora sp. was isolated consistently from diseased samples of Taiwan cherry and associated soil. Six isolates of Phytophthora, of the A1 mating type (1), were isolated from single zoospores. Two of these isolates, Tari 25141 (deposited as BCRC34932 in Bioresource Collection and Research Center, Shinchu, Taiwan) and Tari 25144 (BCRC34933), were used for pathogenicity tests on 1-year-old seedlings of Taiwan cherry to fulfill Koch's postulates. Inoculation was done by placing a cotton swab containing zoospore suspension on leaves or stem, or by soaking seedlings in the zoospore suspension. Inoculated seedlings were kept in a greenhouse at 20 to 25°C for 30 days and examined for appearance of symptoms. Results showed that both isolates were pathogenic on seedlings of Taiwan cherry, causing symptoms similar to those observed on naturally infected seedlings. The temperature range for growth of the six isolates of Phytophthora was 8 to 32°C with optimum temperature at 24°C. The linear growth rate was 72 mm per day on V8A culture (5% V8 vegetable juice, 0.02% CaCO3, and 2% Bacto agar) at 24°C. The colonies on potato dextrose agar produced sparse aerial mycelia with conspicuous radiate patterns. Sporangia were sparse on V8A agar blocks, but abundant when the agar blocks were placed in water under continuous white fluorescent light (average 2,000 lux) for 2 days. Sporangiophores branched sympodially. Sporangia were pear shaped, nonpapillate and nondeciduous, 50 to 75 (62) × 30 to 48 (40) μm, with a length/width ratio of 1.2 to 2.2 (1.6). New internal nested proliferate sporangia were formed inside the empty sac of old matured sporangia after releasing zoospores. No chlamydospores were formed on V8A. Hyphal swellings with distinctive irregular catenulation were produced on V8A and in water. The pathogen was stimulated to form its own oospores by the A2 tester using the method described by Ko (1). Oogonia were 28 to 50 (40) μm in diameter with smooth or irregularly protuberant walls. Oospores were mostly aplerotic and 18 to 42 (31) μm in diameter. Antheridia were amphigynous, mostly two-celled, and 10 to 42 (29) × 12 to 24 (19) μm. The sequence of the internal transcribed spacers (ITS) region of nuclear ribosomal DNA of isolate Tari 25141 (GenBank Accession No. GU111589) was 831 bp and had 99% sequence identity with a number of Phytophthora cambivora isolates such as GenBank Accession Nos. HM004220 (2), AY787030, and EF486692. Based on the morphological characteristics of sporangia and sexual structures and the molecular analysis of ITS sequences, the pathogen from Taiwan cherry was identified as P. cambivora (Petri) Buis. To our knowledge, this is the first report of P. cambivora on native Taiwan cherry in Taiwan and, so far, no other natural hosts have been reported. References: (1) W. H. Ko. J. Gen. Microbiol. 116:459, 1980. (2) P. W. Reeser et al. Mycologia 103:225, 2011.


Plant Disease ◽  
2010 ◽  
Vol 94 (4) ◽  
pp. 483-483 ◽  
Author(s):  
G. Rodríguez-Alvarado ◽  
R. Rodríguez-Fernández ◽  
A. Soto-Plancarte ◽  
S. P. Fernández-Pavía

Carrot (Daucus carota L. subsp. sativus (Hoffm.) Arcang.) is planted as a home-grown vegetable in the central region of Michoacan, Mexico. Powdery mildew was observed on carrot plants cv. Nantesa at several locations near Morelia, Michoacan during March 2009. Affected plants had abundant, white, superficial conidia and mycelium on leaves and stems. All plants at each of five locations surveyed had powdery mildew symptoms with percent foliage coverage ranging from 50 to 80%. Mycelial growth was amphigenous, mainly on the upper leaf surface, covering the whole leaf and with irregular patches on inflorescences and stems. Hyphae were ectophytic with lobed appressoria. Conidiophores presented foot cells 22.5 to 35 (30) × 5.75 to 7 (6.3) μm followed by two cells, one shorter and one longer than the foot cell. Conidia were produced singly, most subcylindric to cylindric, lacked fibrosin bodies, and measured 31.2 to 42 (36.2) × 8.7 to 11.2 (10.5) μm. The teleomorph was not observed. Genomic DNA was extracted from infected leaves; sequences of the internal transcribed spacers (ITS) inclusive of 5.8S rDNA were amplified using previously described primers specific for Erysiphales (3). The ITS sequences shared 100% homology to Erysiphe heraclei specimen VPRI41227 from carrot in Australia (GenBank Accession No. EU371725). On the basis of the morphological characteristics observed and the ITS rDNA sequences, the pathogen was identified as E. heraclei DC. The ITS sequence was deposited in NCBI as Accession No. GU252368. Pathogenicity tests were conducted twice on a total of 10 healthy 8-week-old carrot plants cv. Nantesa. Infected plants were placed in close proximity to healthy plants and maintained in a greenhouse at 27 ± 5°C. Initial signs and symptoms were observed 3 weeks after inoculation and appeared as small, white colonies, which later coalesced and covered most of the foliage. Microscopic examination of the conidia and mycelial morphology matched the originally described pathogen, E. heraclei. Powdery mildew caused by this pathogen has been extensively reported on diverse species and genera of the Apiaceae in Europe and remains one of the most important diseases of carrot (2). The appearance of E. heraclei in diverse regions on a variety of umbelliferous crops indicates that formae speciales have spread, infecting different and specific hosts (1–3). Recently, E. heraclei has been reported on parsley in Puebla, Mexico (4). To our knowledge, this is the first report of E. heraclei causing powdery mildew on carrot in Michoacan, Mexico. This pathogen should be considered as a threat to commercial carrot crops in Mexico. Other crops in the Apiaceae may not be at risk in this area if this powdery mildew is specific for carrots. References: (1) B. J. Aegerter. Page 22 in: Compendium of Umbelliferous Crop Diseases. The American Phytopathological Society, St. Paul, MN, 2002. (2) U. Braun. The Powdery Mildew (Erysiphales) of Europe. Gustav Fischer-Verlag. Jena, Germany, 1995. (3) J. H. Cunnington et al. Australas. Plant Pathol. 32:421, 2003. (4) M. J. Yáñez-Morales et al. Schlechtendalia 19:47, 2009.


Plant Disease ◽  
2009 ◽  
Vol 93 (11) ◽  
pp. 1216-1216 ◽  
Author(s):  
J. Zhang ◽  
G. Q. Li ◽  
D. H. Jiang

In the spring of each year from 2007 to 2009, a leaf blight of garlic (Allium sativum L.) was observed in more than 50 fields in Zhushan County of Hubei Province, China. Gray mold was observed on many of the blighted garlic leaves. The percentage of garlic plants with blight and gray mold symptoms ranged from 10 to 50% with one to three blighted leaves on each plant, which severely reduced the yield of young garlic plants (produced as a green vegetable). Ten strains of a Botrytis sp. were isolated from symptomatic garlic leaves collected from 10 different fields. These strains were inoculated onto potato dextrose agar (PDA) in petri dishes and incubated at 20°C for 3 to 15 days for observation of colony characteristics and morphology of sclerotia and conidia. All 10 Botrytis strains formed flat and “ropy” mycelia (mycelial strands) on PDA. Abundant sporulation with a gray powdery appearance was observed on the colonies after 6 days. Conidiophores were erect with alternate branches at the top and ranged from 907 to 1,256 μm high. Conidia were borne in botryose clusters on conidiophores, obovate, and 10.4 to 17.6 × 7.6 to 13.1 μm with an average length/width ratio of 1.36. Discrete sclerotia were produced on each colony after 15 days. Mature sclerotia were black, cerebriform and convoluted, and 1.9 to 9.1 × 1.6 to 6.5 mm. Morphological characteristics of the colonies, conidia, and sclerotia of these Botrytis strains were similar to Botrytis porri Buchwald (1,2). Strain GarlicBC-16 was selected as a representative for molecular identification. Genomic DNA was extracted from mycelia of this strain and used as a template for amplification of the internal transcribed spacer (ITS) region of rDNA using primer pair ITS1/ITS4. A 539-bp amplicon was obtained and sequenced (GenBank Accession No. EU519206). Excluding the flanking regions, the amplicon contained a 453-bp ITS sequence (ITS1 + 5.8S rDNA + ITS2) 100% identical to the ITS sequence of strain MUCL3234 of B. porri (GenBank Accession No. AJ716292). Pathogenicity of strain GarlicBC-16 was tested by inoculation of 10 young and fully expanded garlic leaves taken from 100-day-old garlic plants with mycelial agar plugs (three plugs per leaf and spaced by 5 cm). Ten garlic leaves inoculated with agar plugs of PDA alone served as controls. Inoculated garlic leaves were covered with a plastic film (0.1 mm thick; Gold Mine Plastic Industrial Ltd. Jiangmen, China) and incubated at 20°C with 12-h light/12-h dark. Control leaves remained healthy after 48 to 120 h, but gray, water-soaked lesions appeared on leaves inoculated with strain GarlicBC-16 after 48 h. The average lesion length reached 27.3 mm after 90 h and abundant sporulation was produced on necrotic leaf lesions after 120 h. Microscopic examination showed the shape and size of conidia that formed on garlic leaf lesions were similar to those formed by strain GarlicBC-16 on PDA. On the basis of the isolation, identification, and pathogenicity tests, B. porri was determined to be the causal agent of garlic leaf blight in Zhushan County. B. porri has been reported to cause neck rot of leek (A. porrum) (1) and clove rot of garlic (2), and has been isolated from asymptomatic foliage and seeds of A. cepa (3). To our knowledge, this is the first report of garlic leaf blight caused by B. porri in China. References: (1) S. K. Asiedu et al. Plant Dis. 70:259, 1986. (2) F. M. Dugan et al. J. Phytopathol. 155:437. 2007. (3) L. J. du Toit et al. Plant Dis. 86:1178, 2002.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zeng-Liang LIU ◽  
Shuangyun Zhou ◽  
Yongcai Huang ◽  
Liu Yang ◽  
Yong Yan ◽  
...  

Passion fruit (Passiflora edulis) is an economically important fruit crop in many tropical and subtropical regions worldwide. In recent years, passion fruit was widely cultivated in Guangxi Province. In 2020, a rot disease occurred on immature fruit of passion fruit in several commercial orchards of Nanning, Guangxi, caused about 50% incidence. The first appeared as small, irregular, water-soaked, brown lesions on immature fruit. As the disease progressed, the lesions rapidly enlarged, causing fruit rot. A layer of sparse white mycelia appeared on the lesions at high humidity. The disease first developed in June, its peak periods from August to September. Five diseased fruits were collected from five different orchards. The edges of symptomatic fleshy mesocarp tissue were cut into pieces (5 mm × 5 mm), surface-sterilized in 75% ethanol solution for 60 s, rinsed three times with sterilized distilled water, and plated on potato dextrose agar (PDA). Plates were incubated at 25°C in the dark. After 5 days, similar white colonies with abundant aerial mycelia developed from all plated tissue samples. Five isolates were obtained, and they were identified as Phytophthora nicotianae based on morphological characteristics and DNA analysis. Spherical hyphal swellings were commonly produced. Numerous sporangia were formed in sterile soil extract. Sporangia were ovoid or obpyriform, papillate, and measured 25 to 58 μm (average 41 μm) × 21 to 45 μm (average 29 μm). Chlamydospores were spherical and 19 to 43 μm in diameter (average 30 μm) (Erwin and Ribeiro 1996). The genomic DNA of a representative isolate Seg2-5 was extracted from mycelia through modified CTAB method (Murray and Thompson 1980). The rDNA internal transcribed spacer (ITS) region, ypt1, and coxII were amplified and sequenced with primers ITS1/ITS4 (White et al., 1990), Yph1F/Yph2R (Schena et al. 2008), and FM75F/FM78R (Villa et al. 2006), respectively. BLAST searches of the ITS, ypt1, and coxII sequences (Accession No. MW470847, MW770870, and MW770871) showed 99 to 100% identity with sequences of P. nicotianae (Accession No. JF792540, MK058408, and MH551183). Based on morphological characteristics and phylogenetic analysis, isolate Seg2-5 was identified as P. nicotianae. To confirm pathogenicity, asymptomatic and immature fruits 'Mantianxing' of passion fruit were previously disinfested in 0.5% sodium hypochlorite. Mycelial plugs of isolate Seg2-5 were placed onto the surface of fruits by nonwounded and pin-prick inoculation. Blank plugs were used as negative controls. Each treatment had five replicates and the test was repeated twice. Fruits were maintained in plastic boxes at 28°C and the initial disease spots appeared at 3 dpi or 5 dpi with wounded or non-wounded inoculation. After 7 to 10 days, all inoculated fruits showed similar symptoms as observed initially in the field, whereas control fruits remained healthy. P. nicotianae was successfully reisolated and identified from the inoculated fruits based on morphological characters and ITS sequence, thus confirming Koch’s postulates. P. nicotianae had been previously isolated from passion fruit in South Africa (Van and Huller 1970), Vietnam (Nguyen et al. 2015), and Fujian Province of China (Luo et al. 1993). To our knowledge, this is the first report of P. nicotianae infecting passion fruit in Guangxi Province, China.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 1028-1028 ◽  
Author(s):  
J. M. French ◽  
R. A. Stamler ◽  
J. J. Randall ◽  
N. P. Goldberg

Phytophthora nicotianae (synonym P. parasitica) Breda de Haan was isolated from recently harvested onion bulbs (Allium cepa) in cold storage from a commercial field in southern New Mexico. Deteriorating, water-soaked tissue from the center of four bulbs was plated onto water agar and incubated at room temperature. After 72 h, cultures of Phytophthora (identified by the presence of coenocytic hyphae and papillate sporangia) were isolated and transferred to V8 agar amended with ampicillin (250 mg/liter), rifampicin (10 mg/liter), and pimaricin (0.2% wt/vol). Isolates were identified as P. nicotianae based on morphological characteristics and DNA analysis. Sporangia were sharply papilliate, noncaducous, and ovoid to spherical. The average sporangium size was 45.9 × 39.9 μm with a length-to-width ratio of 1.15. Clamydospores, both terminal and intercalary, were spherical to ovoid and averaged 37.2 × 35.2 μm (2). PCR from whole-cell extracts was performed on four cultured isolates from the infected onion tissue using previously described primers ITS4 and ITS6, which amplify the 5.8S rDNA and ITS1 and ITS2 internal transcribed spacers (1,4). A band of approximately 890 bp was amplified and directly sequenced (GenBank Accession No. HQ398876). A BLAST search of the NCBI total nucleotide collection revealed a 100% similarity to multiple P. nicotianae isolates previously sequenced (1). To confirm the pathogenicity of the isolates, onion seedlings were inoculated with 25 ml of P. nicotionae zoospore solution (15,000 zoospores/ml). Necrosis of leaf tissue and seedling death was observed 5 days postinoculation. P. nicotianae was reisolated from the infected onion seedlings and the ITS region was sequenced to confirm its identity. P. nicotianae was previously reported in bulb onion from Australia, Taiwan (Formosa), and Zimbabwe (Rhodesia) (2). P. nicotianae was reported on bunching onions (A. fistulosum) in Hawaii in 1989 (3). Onions are an important crop in New Mexico with a total production value of 47 million dollars in 2008 (NM Agriculture Statistics 2008). This discovery of a potentially significant postharvest disease poses a threat to the onion industry in New Mexico. To our knowledge, this is the first report of P. nicotianae in bulb onion in the United States and the first report of P. nicotianae in New Mexico on any crop. References: (1) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (2) D. C. Erwin and O. K. Ribeiro. Page 56 in: Phytophthora Diseases Worldwide. The American Phytopathological Society, St Paul, MN, 1996. (3) R. D. Raabe et al. Information Text Series No. 22. University of Hawaii. Hawaii Inst. Trop. Agric. Human Resources, 1981. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 791-791 ◽  
Author(s):  
A. Dilmaghani ◽  
M. H. Balesdent ◽  
T. Rouxel ◽  
O. Moreno-Rico

Broccoli (Brassica oleracea var. italica), cauliflower (B. oleracea var. botrytis), and cabbage (B. oleracea var. capitata) have been grown in central Mexico since 1970, with 21,000 ha cropped in 2001. In contrast, areas grown with oilseed rape (B. napus) are very limited in Mexico (<8,000 ha). Blackleg, a destructive disease of B. napus in most parts of the world, was first observed in Mexico in Zacatecas and Aguascalientes in 1988 on B. oleracea, causing as much as 70% yield loss. A species complex of two closely related Dothideomycete species, Leptosphaeria maculans and L. biglobosa, is associated with this disease of crucifers (1), but leaf symptoms on susceptible plants are different, with L. maculans typically causing >15-mm pale gray lesions with numerous pycnidia, whereas L. biglobosa causes dark and smaller lesions only containing a few pycnidia. Having a similar epidemiology, both species can be present on the same plants at the same time, and symptom confusion can occur as a function of the physiological condition of the plant or expression of plant resistance responses. A total of 209 isolates from symptomatic B. oleracea leaves were collected from three fields in central states of Mexico (58 to 71 isolates per location). All leaves showed similar symptoms, including a 10- to 15-mm tissue collapse with an occasional dark margin. Cotyledons of seven B. napus differentials were inoculated with conidia of all the isolates as described by Dilmaghani et al. (1). Two hundred isolates caused tissue collapse typical of L. maculans. However, nine obtained from white cabbage in a single location in Aguascalientes caused <5-mm dark lesions. When inoculated onto cotyledons of three B. oleracea genotypes commonly grown in Mexico (cvs. Domador, Monaco, and Iron Man), the nine isolates caused a range of symptoms characterized by tissue collapse (maximum 10 to 15 mm), showing the presence of patches of black necrotic spots within the collapse. The occasional presence of a few pycnidia allowed us to reisolate the fungus for molecular identification. ITS1-5.8S-ITS2, (internal transcribed spacers and 5.8S rDNA), actin, and β-tubulin sequences were obtained as described previously (4). Multiple gene genealogies based on these sequence data showed two subclades of L. biglobosa: L. biglobosa ‘occiaustralensis’ (one isolate; ITS [AM410082], actin [AM410084], and β-tubulin [AM410083]) and L. biglobosa ‘canadensis’ (eight isolates; ITS [AJ550868], actin [AY748956], and β-tubulin [AY749004]) (3,4), which were previously described on B. napus in the United States, Canada, and Chile. To our knowledge, this is the first report of L. biglobosa in Mexico. Previously, this species has only been reported once on B. oleracea without discrimination into subclades (2). In the Aguascalientes sampling, 24% of the isolates were L. biglobosa, similar to Canadian locations where this species is still common as compared with L. maculans (1). The large proportion of sampled L. biglobosa ‘canadensis’, highlights the prevalence of this subclade throughout the American continent (1). References: (1) A. Dilmaghani et al. Plant Pathol. 58:1044, 2009. (2) E. Koch et al. Mol. Plant-Microbe Interact. 4:341, 1991. (3) E. Mendes-Pereira et al. Mycol Res. 107:1287, 2003. (4) L. Vincenot et al. Phytopathology 98:321, 2008.


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 650-650 ◽  
Author(s):  
T. Thomidis ◽  
T. J. Michailides

In Greece, kiwi (Actinidia deliciosa) is mostly found in the northern part of the country where approximately 440,000 ha are grown. In the summer of 2006, a Stemphylium sp. was frequently isolated from leaves of kiwi (cv. Hayward) grown in the province of Imathia. Symptomatic leaves were covered with irregular, necrotic, brown areas. Lesions had a distinct margin that, in some cases, covered a wide part of the diseased leaves. Intense symptoms were frequently observed and associated with defoliation. This Stemphylium sp. was consistently isolated from diseased leaves onto potato dextrose agar (PDA) after surface sterilization with 0.1% chlorine solution. On the basis of morphological characteristics of mycelia, dimensions (length 20 to 29 μm and width 14 to 21 μm) and mean length/width ratio (1.42 μm) of conidia, and width and apical cell width of condiophores, the fungus was identified as Stemphylium botryosum (Wallr.) (2,3) Koch's postulates were completed in the laboratory by inoculating leaves of kiwi (cv. Hayward) with an isolate of S. botryosum originated from a symptomatic leaf of a Hayward kiwi. Twenty leaves were surface sterilized by dipping them into 0.1% chlorine solution for 2 to 3 min, washing in sterile distilled water, and allowing them to dry in a laminar flow hood. A leaf was then placed into a petri plate containing a wet, sterilized paper towel. Inoculation was made by transferring a 5-mm-diameter mycelial disc from the margins of a 7-day-old culture onto the center of each leaf surface. Petri plates were closed and incubated at 25°C with 12 h of light for 6 days. Koch's postulates were satisfied when the same S. botryosum was reisolated from 100% of inoculated leaves that developed symptoms similar to those observed in the vineyards. Leaves inoculated with a PDA plug alone (with no S. botryosum) did not develop any symptoms. Previously, Alternaria alternata was reported as the causal agent of a leaf spot pathogen of kiwi (1,4). To our knowledge, this is the first report of the occurrence of S. botryosum causing leaf blight of kiwi in Greece and worldwide. This pathogen can cause a high level of defoliation in diseased plants. References: (1) L. Corazza et al. Plant Dis. 83:487, 1999. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Mycology Institute. London, England, 1971. (3) E. G. Simmons. Mycologia 61:1, 1969. (4) C. Tsahouridou and C. C. Thanassoulopoulos. Plant Dis. 84:371, 2000


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1278-1278 ◽  
Author(s):  
S. E. Cho ◽  
J. H. Park ◽  
S. H. Hong ◽  
I. Y. Choi ◽  
H. D. Shin

Agastache rugosa (Fisch. & C.A. Mey.) Kuntze, known as Korean mint, is an aromatic plant in the Lamiaceae. It is widely distributed in East Asian countries and is used as a Chinese traditional medicine. In Korea, fresh leaves are commonly added to fish soups and stews (3). In November 2008, several dozen Korean mints plants growing outdoors in Gimhae City, Korea, were found to be severely infected with a powdery mildew. The same symptoms had been observed in Korean mint plots in Busan and Miryang cities from 2008 to 2013. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on stems and both sides of the leaves. Severe disease pressure caused withering and senescence of the leaves. Voucher specimens (n = 5) were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were 105 to 188 × 10 to 13 μm and produced 2 to 4 immature conidia in chains with a sinuate outline, followed by 2 to 3 cells. Foot-cells of the conidiophores were straight, cylindrical, slightly constricted at the base, and 37 to 58 μm long. Conidia were hyaline, ellipsoid to barrel-shaped, measured 25 to 40 × 15 to 23 μm (length/width ratio = 1.4 to 2.1), lacked distinct fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were obconically rounded at the apex and subtruncate at the base. Germ tubes were produced at the perihilar position of conidia. No chasmothecia were observed. The structures described above were typical of the Oidium subgenus Reticuloidium anamorph of the genus Golovinomyces. The measurements and morphological characteristics were compatible with those of G. biocellatus (Ehrenb.) V.P. Heluta (1). To confirm the identification, molecular analysis of the sequence of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of isolate KUS-F27200 was conducted. The complete ITS rDNA sequence was amplified using primers ITS5 and P3 (4). The resulting 514-bp sequence was deposited in GenBank (Accession No. KJ585415). A GenBank BLAST search of the Korean isolate sequence showed >99% similarity with the ITS sequence of many G. biocellatus isolates on plants in the Lamiaceae (e.g., Accession Nos. AB307669, AB769437, and JQ340358). Pathogenicity was confirmed by gently pressing diseased leaf onto leaves of five healthy, potted Korean mint plants. Five non-inoculated plants served as a control treatment. Inoculated plants developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on inoculated plants was identical morphologically to that observed on the original diseased plants. The pathogenicity test was repeated with identical results. A powdery mildew on A. rugosa caused by G. biocellatus was reported from Romania (2). To our knowledge, this is the first report of powdery mildew caused by G. biocellatus on A. rugosa in Korea. The plant is mostly grown using organic farming methods with limited chemical control options. Therefore, alternative control measures should be considered. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., online publication, USDA ARS, retrieved 17 February 2014. (3) T. H. Kim et al. J. Sci. Food Agric. 81:569, 2001. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1582-1582 ◽  
Author(s):  
S. Vitale ◽  
L. Luongo ◽  
M. Galli ◽  
A. Belisario

The genus Viburnum comprises over 150 species of shrubs and small trees such as Laurustinus (Viburnum tinus L.), which is one of the most widely used ornamental plants in private and public gardens. Furthermore, it commonly forms stands of natural woodland in the Mediterranean area. In autumn 2012, a survey was conducted to determine the presence of Phytophthora ramorum on Viburnum in commercial nurseries in the Latium region where wilting, dieback, and death of twigs were observed on 30% of the Laurustinus plants. A Phytophthora species was consistently recovered from soil rich in feeder roots from potted Laurustinus plants showing symptoms. Soil samples were baited with rhododendron leaves. Small pieces of leaf tissue cut from the margin of lesions were plated on P5ARPH selective medium (4). Pure cultures, obtained by single-hypha transfers on potato dextrose agar (PDA), were petaloid. Sporangia formation was induced on pepper seeds (3). Sporangia were almost spherical, ovoid or obpyriform, non-papillate and non-caducous, measuring 36.6 to 71.4 × 33.4 to 48.3 μm (average 53.3 × 37.4 μm) with a length/width ratio of 1.4. Chlamydospores were terminal and 25.2 to 37.9 μm in diameter. Isolates were considered heterothallic because they did not produce gametangia in culture or on the host. All isolates examined had 30 to 35°C as optimum temperatures. Based on these morphological characteristics, the isolates were identified as Phytophthora hydropathica (2). Morphological identification was confirmed by internal transcribed spacer (ITS), and mitochondrial partial cytochrome oxidase subunit 2 (CoxII) with BLAST analysis in the NCBI database revealing 99% identity with ITS and 100% identity with CoxII. The sequences of the three isolates AB234, AB235, and AB236 were deposited in European Nucleotide Archive (ENA) with the accession nos. HG934148, HG934149, and HG934150 for ITS and HG934151, HG934152, and HG934153 for CoxII, respectively. Pathogenicity tests were conducted in the greenhouse on a total of six 1-year-old shoots cut from V. tinus plants with two inoculation points each. Mycelial plugs cut from the margins of actively growing 8-day-old cultures on PDA were inserted through the epidermis into the phloem. Controls were treated as described above except that sterile PDA plugs replaced the inoculum. Shoots were incubated in test tubes with sterile water in the dark at 24 ± 2°C. After 2 weeks, lesions were evident at the inoculation points and symptoms were similar to those caused by natural infection. P. hydropathica was consistently re-isolated from the margin of lesions, while controls remained symptomless. In the United States in 2008, P. hydropathica was described as spreading from irrigation water to Rhododendron catawbiense and Kalmia latifolia (2). This pathogen can also attack several other horticultural crops (1), but to our knowledge, this is the first report of P. hydropathica causing wilting and shoot dieback on V. tinus. References: (1) C. X. Hong et al. Plant Dis. 92:1201, 2008. (2) C. X. Hong et al. Plant Pathol. 59:913, 2010. (3) E. Ilieva et al. Eur. J. Plant Path. 101:623, 1995. (4) S. N. Jeffers and S. B. Martin. Plant Dis. 70:1038, 1986.


Sign in / Sign up

Export Citation Format

Share Document