scholarly journals First Report of Phytophthora cambivora Causing Leaf and Stem Blight and Root Rot on Taiwan Cherry (Prunus campanulata) in Taiwan

Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1065-1065
Author(s):  
J.-H. Huang ◽  
P.-J. Ann ◽  
Y.-H. Chiu ◽  
J.-N. Tsai

Taiwan cherry or Formosan cherry (Prunus campanulata Maxim.) is a beautiful ornamental tree that is native to Taiwan. In spring 2005, a severe disease was observed on 1- to 3-year-old seedlings of Taiwan cherry in a garden in Tungshih, Taichung, Taiwan. Infected plants showed symptoms of greenish water-soaked spots on leaves that became dark brown, 2 to 3 cm in diameter. Infected leaves withered and fell to the ground in 3 to 5 days and young shoots showed symptoms of withering and drooping. Infected roots showed symptoms of necrosis. Severely infected plants eventually died. A Phytophthora sp. was isolated consistently from diseased samples of Taiwan cherry and associated soil. Six isolates of Phytophthora, of the A1 mating type (1), were isolated from single zoospores. Two of these isolates, Tari 25141 (deposited as BCRC34932 in Bioresource Collection and Research Center, Shinchu, Taiwan) and Tari 25144 (BCRC34933), were used for pathogenicity tests on 1-year-old seedlings of Taiwan cherry to fulfill Koch's postulates. Inoculation was done by placing a cotton swab containing zoospore suspension on leaves or stem, or by soaking seedlings in the zoospore suspension. Inoculated seedlings were kept in a greenhouse at 20 to 25°C for 30 days and examined for appearance of symptoms. Results showed that both isolates were pathogenic on seedlings of Taiwan cherry, causing symptoms similar to those observed on naturally infected seedlings. The temperature range for growth of the six isolates of Phytophthora was 8 to 32°C with optimum temperature at 24°C. The linear growth rate was 72 mm per day on V8A culture (5% V8 vegetable juice, 0.02% CaCO3, and 2% Bacto agar) at 24°C. The colonies on potato dextrose agar produced sparse aerial mycelia with conspicuous radiate patterns. Sporangia were sparse on V8A agar blocks, but abundant when the agar blocks were placed in water under continuous white fluorescent light (average 2,000 lux) for 2 days. Sporangiophores branched sympodially. Sporangia were pear shaped, nonpapillate and nondeciduous, 50 to 75 (62) × 30 to 48 (40) μm, with a length/width ratio of 1.2 to 2.2 (1.6). New internal nested proliferate sporangia were formed inside the empty sac of old matured sporangia after releasing zoospores. No chlamydospores were formed on V8A. Hyphal swellings with distinctive irregular catenulation were produced on V8A and in water. The pathogen was stimulated to form its own oospores by the A2 tester using the method described by Ko (1). Oogonia were 28 to 50 (40) μm in diameter with smooth or irregularly protuberant walls. Oospores were mostly aplerotic and 18 to 42 (31) μm in diameter. Antheridia were amphigynous, mostly two-celled, and 10 to 42 (29) × 12 to 24 (19) μm. The sequence of the internal transcribed spacers (ITS) region of nuclear ribosomal DNA of isolate Tari 25141 (GenBank Accession No. GU111589) was 831 bp and had 99% sequence identity with a number of Phytophthora cambivora isolates such as GenBank Accession Nos. HM004220 (2), AY787030, and EF486692. Based on the morphological characteristics of sporangia and sexual structures and the molecular analysis of ITS sequences, the pathogen from Taiwan cherry was identified as P. cambivora (Petri) Buis. To our knowledge, this is the first report of P. cambivora on native Taiwan cherry in Taiwan and, so far, no other natural hosts have been reported. References: (1) W. H. Ko. J. Gen. Microbiol. 116:459, 1980. (2) P. W. Reeser et al. Mycologia 103:225, 2011.

Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1278-1278 ◽  
Author(s):  
S. E. Cho ◽  
J. H. Park ◽  
S. H. Hong ◽  
I. Y. Choi ◽  
H. D. Shin

Agastache rugosa (Fisch. & C.A. Mey.) Kuntze, known as Korean mint, is an aromatic plant in the Lamiaceae. It is widely distributed in East Asian countries and is used as a Chinese traditional medicine. In Korea, fresh leaves are commonly added to fish soups and stews (3). In November 2008, several dozen Korean mints plants growing outdoors in Gimhae City, Korea, were found to be severely infected with a powdery mildew. The same symptoms had been observed in Korean mint plots in Busan and Miryang cities from 2008 to 2013. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on stems and both sides of the leaves. Severe disease pressure caused withering and senescence of the leaves. Voucher specimens (n = 5) were deposited in the Korea University Herbarium (KUS). Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores were 105 to 188 × 10 to 13 μm and produced 2 to 4 immature conidia in chains with a sinuate outline, followed by 2 to 3 cells. Foot-cells of the conidiophores were straight, cylindrical, slightly constricted at the base, and 37 to 58 μm long. Conidia were hyaline, ellipsoid to barrel-shaped, measured 25 to 40 × 15 to 23 μm (length/width ratio = 1.4 to 2.1), lacked distinct fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were obconically rounded at the apex and subtruncate at the base. Germ tubes were produced at the perihilar position of conidia. No chasmothecia were observed. The structures described above were typical of the Oidium subgenus Reticuloidium anamorph of the genus Golovinomyces. The measurements and morphological characteristics were compatible with those of G. biocellatus (Ehrenb.) V.P. Heluta (1). To confirm the identification, molecular analysis of the sequence of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of isolate KUS-F27200 was conducted. The complete ITS rDNA sequence was amplified using primers ITS5 and P3 (4). The resulting 514-bp sequence was deposited in GenBank (Accession No. KJ585415). A GenBank BLAST search of the Korean isolate sequence showed >99% similarity with the ITS sequence of many G. biocellatus isolates on plants in the Lamiaceae (e.g., Accession Nos. AB307669, AB769437, and JQ340358). Pathogenicity was confirmed by gently pressing diseased leaf onto leaves of five healthy, potted Korean mint plants. Five non-inoculated plants served as a control treatment. Inoculated plants developed symptoms after 7 days, whereas the control plants remained symptomless. The fungus present on inoculated plants was identical morphologically to that observed on the original diseased plants. The pathogenicity test was repeated with identical results. A powdery mildew on A. rugosa caused by G. biocellatus was reported from Romania (2). To our knowledge, this is the first report of powdery mildew caused by G. biocellatus on A. rugosa in Korea. The plant is mostly grown using organic farming methods with limited chemical control options. Therefore, alternative control measures should be considered. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No. 11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., online publication, USDA ARS, retrieved 17 February 2014. (3) T. H. Kim et al. J. Sci. Food Agric. 81:569, 2001. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 87
Author(s):  
Kumpei Shiragaki ◽  
Shuji Yokoi ◽  
Takahiro Tezuka

The genus Capsicum is comprised of 5 domesticated and more than 30 wild species. The region of nuclear ribosomal DNA internal transcribed spacers (rDNA-ITS) has widely been used for species identification, but has rarely been used in Capsicum. In this study, the evaluation of genetic diversity and a phylogenetic analysis were conducted using rDNA-ITS of 28 Capsicum accessions, including five domesticated and two wild species. We surveyed six conventional keys of domesticated species and another five traits in Capsicum accessions. Specific morphological characteristics were found in C. annuum, C. baccatum, and C.pubescens. Three subclones of each accession were sequenced, and rDNA-ITS polymorphisms were detected in all accessions excluding C. annuum, suggesting that incomplete concerted evolution occurred in rDNA-ITS of Capsicum. The genetic diversity was evaluated using nucleotide polymorphism and diversity. C. annuum had the lowest genetic diversity of all species in this study. The phylogenetic tree formed a species-specific clade for C. annuum, C. baccatum, and C. pubescens. The C. chinense clade existed in the C. frutescens clade, implying that it was a cultivated variant of C. frutescens. C. chacoense likely belonged to the C. baccatum complex according to its morphologic and genetic features. This study indicated that the rDNA-ITS region can be used for simple identification of domesticated Capsicum species.


Plant Disease ◽  
2021 ◽  
Author(s):  
Francisco Bruno da Silva Café ◽  
Rhannaldy Benício Rebouças ◽  
Juvenil H. Cares ◽  
Cristiano Souza Lima ◽  
Francisco de Assis Câmara Rabelo Filho ◽  
...  

During a survey in 2018 for plant nematodes associated with roots and soil in cactus cultivation areas in Ceará State (3°44'48"S, 38°34'29"W), cysts were found on roots of mandacaru, Cereus jamacaru DC. This cactus is native to Brazil, can grow to 6-10 meters in height, and is widely distributed in the Northeast region (Romeiro-Brito et al. 2016) where it is used in construction, in disease remedies, as forage, and as an ornamental (Sales et al. 2014). Several cysts, second-stage juveniles (J2) and eggs extracted from the soil and roots, using sucrose centrifugation, were examined by scanning electron microscopy (SEM) and light microscopy (LM) to determine morphological and morphometric characteristics. Molecular characteristics were determined by DNA extraction from J2 and embryonated eggs using a protocol specific for Heteroderidae (Subbotin et al., 2018). The internal transcribed spacer sequence (ITS) region of the rDNA and D2-D3 regions of the 28S rDNA were amplified using the universal primers TW81 (5′-GTTTCCGTAGGTGAACCTGC-3′) and AB28 (5′-ATATGCTTAAGTTCAGCGGGT-3′), D2A(5′-ACAAGTACCGTGAGGGAAAGTTG-3′) and D3B(5′-TCGGAAGGAACCAGCTACTA-3′), respectively. To confirm that mandacaru is a host for C. cacti, six plantlets of mandacaru were inoculated with 1,800 eggs of the nematode, and kept in a greenhouse at 31 ± 3 ºC and irrigated daily. Six non inoculated mandacaru plantlets served as control treatment. Morphometric characteristics of cysts (n=35) were body length, excluding neck, 555.8 ± 87.8 (354,9 - 727,6) μm, body width 392.1 ± 63.4 (297.9 - 553.7) μm, neck length 63.5 ± 25.8 (49.8-105.0) μm, length to width ratio 1.4 ± 0.2 (1.0-1.8) μm and vulval cone length 48.4 ± 15.2 (40.7 –53.6) μm. Cysts had a rough surface, were lemon-shaped to rounded and had a zigzag cuticular pattern with a protruding vulval cone. They were circumfenestrate without underbridge and bullae, but with the presence of vulval denticles. Measurements of second-stage juveniles (n = 13) included the body length 511.2 ± 33.7 (452.7 - 551.5) μm, stylet length 28.0 ± 2.8 (25.4 - 34.0) μm, tail length 50.7 ± 5.1 (40.6 - 57.4) μm, tail hyaline region 22.7 ± 2.2 (18.9 – 27.1), with a = 20.9 ± 2.2 (17.7-24.3) μm, b = 5.4 ± 0.4 (5.1-5.8) μm, b'= 3.4 ± 0.4 (3.1-3.9) μm, c = 10.2 ± 1.3 (8.9-13.3) μm and c' = 3.8 ± 0.4 (3.0-4.5) μm. The observations of essential morphological characteristics for identification indicated that the species found on C. jamacaru was Cactodera cacti (Filipjev & Schuurmans-Stekhoven, 1941) Krall & Krall, 1978. The sequences of the studied rDNA regions were submitted to GenBank (ITS: MW562829 and D2–D3 regions of 28S: MW562830). The samples used for molecular analysis showed a high degree of sequence identity (99.59%) with C. cacti, from China, Iran and USA for the ITS region. The identity of the D2-D3 regions of 28S sequence was 99.54% with C. cacti isolates from Germany and 99.41% with isolates from USA. Phylogenetic analyses were performed using Maximum likelihood (ML) method for both individual loci, confirming the species as Cactodera cacti. All inoculated mandacaru plantlets showed C. cacti cysts on the roots after 60 days, confirming that mandacaru is a host for C. cacti. This species was reported in São Paulo State, in 2001, associated with ornamental cactus cultivated in pots, but plant species were not identified (Santos et al., 2001). The second report in Brazil was to Schlumbergera sp., an ornamental plant (Oliveira et al. 2007). In both studies, the nematode was not morphologically nor molecularly characterized. Cactodera cacti has been commonly associated with cactus worldwide (Esser, 1992). It has been reported in association with C. jamacaru was first reported in 2011 in China (Duan et al. 2012). This is the first report of the occurrence of C. cacti on C. jamacaru in field conditions in Brazil, and its presence in cactus cultivation areas with agricultural importance represents a threat to cactus production in the country.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1116-1116 ◽  
Author(s):  
W. Cheon ◽  
Y. H. Jeon

In the winter of 2011, greenhouse-grown zucchini (Cucurbita pepo) in Andong City, Korea, showed severe disease symptoms on fruits and dying leaves of zucchini plants that resembled gray mold disease with about 20% yield loss. Symptoms included extensive growth of mycelia and gray conidia on stem and fruit lesions. Lesions expanded rapidly under cool, humid conditions. As the disease progressed, leaves, stems, and fruits became necrotic and were covered by an abundant, soft, gray, sporulating mycelium. Diseased fruit tissue was excised and surface sterilized by immersion in 2% NaOCl for 1 min, placed on PDA (potato dextrose agar), and incubated at 22°C. Fungal colonies were initially white and became gray to brown after 72 h. Analysis of light micrographs showed the presence of elliptical conidia on PDA that was 7.5 to 16.0 μm long and 5 to 10.5 μm wide. In culture, a few, black, small and large irregular sclerotia were produced. Microsclerotia were round, spherical or irregular in shape, and ranged from 1.0 to 3.3 and 1.2 to 3.4 mm (width and length). Conidiophores were slender and branched with enlarged apical cells bearing smooth, ash-colored conidia. These morphological characteristics identified the fungus as Botrytis cinerea (1). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1 (forward) and ITS4 (reverse) primer set (ITS1: 5′-TCCGTAGGTGAACCTGCGG-3′, ITS4: 5′-TCCTCCGCTTATTGATATGC-3′) and sequenced (2). BLAST analysis of the PCR product showed that the sequence had 100% identity with the nucleotide sequences for B. cinerea. Pathogenicity tests were performed by placing mycelium fragments (1 cm2) of PDA cultures on zucchini fruits. Controls were treated with PDA alone. Five replicates for the inoculated and control plants were used. All fruits were covered with plastic bags and incubated in a growth chamber to maintain 90 to 100% relative humidity at 22°C. Typical symptoms appeared 2 to 6 days after inoculation. The inoculated plants developed typical gray mold symptoms with gray sporulating lesions, while controls remained healthy with no lesions. B. cinerea reisolated from the inoculated tissues was morphologically identical to the original isolates. In a cold outside (below 0°C), wet greenhouse, plants are likely to be exposed to resident Botrytis populations and if the gray mold disease occurs, it can spread on zucchini plants very fast, in 2 days to a week inside a 100 m2 greenhouse. Therefore, gray mold disease could have a significant impact on greenhouse production of zucchini. To our knowledge, this is the first report of B. cinerea causing gray mold of greenhouse-grown zucchini in Korea. References: (1) H. L. Barnett and B. B. Hunter. Illustrated Genera of Imperfect Fungi. Burgess Publishing Company, Minneapolis, MN, 1972. (2) T. J. White et al. PCR Protocols. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 283-283
Author(s):  
M. Shao ◽  
W. F. Du ◽  
D. C. Yu ◽  
P. Du ◽  
S. J. Ni ◽  
...  

Konjac (Amorphophallus) is an important economic crop widely used in health products and biomaterials in Asia (2). A serious foliage disease of Konjac was observed in Fuyuan County, Yunnan Province, China, in July 2012. The symptoms began with leaf color changes from light green to yellow, followed by discoloration on the stem base, plant wilting, bulb rotting, and ultimately plant death. Symptomatic tissues were cut into small pieces, surface-sterilized, and cultured on 20% V8 juice agar at 28°C. Five days after incubation, white fluffy colonies with the typical sporangium of Phytophthora sp. were observed from root and stem pieces. Isolates were identified as P. nicotianae based on morphological characteristics and DNA analysis. The growth rate of the colonies was 16 mm/d at 28°C. Sporangia were pyriform, ovoid to spherical, and papillate, and the dimensions of the 80 sporangia measured ranged from 23.7 to 60.4 × 19.4 to 45.7 μm (avg. 42.4 × 31.5 μm) with length-to-breadth ratios of 1.19 to 1.44 (avg. 1.34). The chlamydospores were spherical with a smooth surface, and their dimensions ranged from 20.3 to 47.3 × 18.9 to 45.9 μm (avg. 32.7 × 30.4 μm) (3). DNA was extracted from one colony containing spores and hyphae of the isolated P. nicotianae, and the nuclear ribosomal DNA internal transcribed spacer (ITS) region was amplified with primers ITS6 and ITS4 (4). The obtained 854-bp amplicon was purified and sequenced. NCBI BLAST retrieved a 100% identity with P. nicotianae (GenBank Accession No. KJ506732). A pathogenicity test of the isolated P. nicotianae was conducted in a greenhouse. After 7 days in a humidity-controlled greenhouse, all 10 inoculated plants showed similar symptoms as observed initially in the field, while control plants were symptomless. P. nicotianae was re-isolated from the inoculated stems, thus successfully completing Koch's postulates (1). To our knowledge, this is the first report of P. nicotianae as a pathogen of Konjac in China. References: (1) B. Alvarez-Rodriguez et al. Plant Dis. 97:1257, 2013. (2) H. Ban, et al. Plant Cell Rep. 28:1847, 2009. (3) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. APS Press, St. Paul, MN, 1996. (4) J. M. French et al. Plant Dis. 95:1028, 2011.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1158-1158 ◽  
Author(s):  
Y. H. Liu ◽  
T. Lin ◽  
C. S. Ye ◽  
C. Q. Zhang

Blueberry (Vaccinium corymbosum) production is developing quickly in China with about 20,000 ha presently cultivated. In 2010 in Lin'an, Zhejiang Province, plants developed an apparently new disease of blueberry (cv. Duke) with symptoms consisting of wilting of foliage, stunting of plants, and reduced fruit yields. Internal vascular and cortical tissues of plant crowns showed a brown to orange discoloration. Approximately 3% of the plants in the commercial plantings were affected and eventually died after 50 to 60 days. Infected plant samples (stems and roots) collected from different fields were surface sterilized with 1.5% sodium hypochlorite for 2 min, rinsed in water, plated on 2% potato dextrose agar (PDA), and incubated at 25°C in the dark for 1 week. Single conidium cultures were consistently isolated and cultured on acidified PDA (APDA) for morphological characterization (1,2). Colonies were light with purple mycelia, and beige or orange reverse colony colors developed after 7 days incubation at 25°C. Colonies producing abundant microconidia and macroconidia. Microconidia were hyaline and oval-ellipsoid to cylindrical (3.9 to 9.6 × 1.1 to 3.4 μm). Macroconidia were 3 to 5 septate and fusoid-subulate with a pedicellate base (28.6 to 37.5 × 3.3 to 4.2 μm). Morphology and development of macroconidia and microconida were consistent with a description of Fusarium oxysporum Schltdl (1,2). The ribosomal internal transcribed spacers ITS1 and ITS2 of eight isolates were amplified using primers ITS1/ITS4 on DNA extracted from mycelium and nucleotide sequences showed 100% similarity to that of F. oxysporum. To confirm pathogenicity, 20 blueberry plants (cv. Duke) were inoculated by dipping the roots into a conidial suspension (107 conidia per ml) for 30 min. The inoculated plants were transplanted into pots containing sterilized peat and maintained at 25°C and 100% relative humidity in a growth chamber with a daily 12-h photoperiod of fluorescent light. The pathogenicity test was conducted twice. Within 40 days, all inoculated plants developed wilt symptoms similar to that observed in the field. No symptoms were observed on plants dipped into distilled water. The fungus was successfully re-isolated from crowns and roots cultured on APDA, exhibiting morphological characteristics identical to F. oxysporum (1,2), confirming Koch's postulates. To our knowledge, this is the first report of blueberry wilt caused by Fusarium. References: (1) P. M. Kirk et al. The Dictionary of the Fungi, 10th edition, page 159. CABI Bioscience, Wallingford, UK, 2008. (2) W. C. Snyder and H. N. Hansen. Am. J. Bot. 27:64, 1940.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1072-1072 ◽  
Author(s):  
M. J. Park ◽  
S. E. Cho ◽  
J. H. Park ◽  
S. K. Lee ◽  
H. D. Shin

Hydrangea macrophylla (Thunb.) Ser., known as mophead hydrangea, is native to Japan and is used as a potted ornamental or is planted for landscaping in gardens worldwide. In May 2011, powdery mildew occurred on potted mophead hydrangea cv. Emerald plants in polyethylene-film-covered greenhouses in Icheon, Korea. Heavily infected plantings were unmarketable, mainly due to purplish red discoloration and crinkling of leaves. Such powdery mildew symptoms on mophead hydrangea in gardens had been often found in Korea since 2001, and the collections (n = 10) were deposited in the Korea University herbarium (KUS). In all cases, there was no trace of chasmothecia formation. Mycelium was effuse on both sides of leaves, young stems, and flower petals. Appressoria were well developed, lobed, and solitary or in opposite pairs. Conidiophores were cylindrical, 70 to 145 × 7.5 to 10 μm, and composed of three to four cells. Foot-cells of conidiophores were straight to sub-straight, cylindric, short, and mostly less than 30 μm long. Conidia produced singly were ellipsoid to oval, 32 to 50 × 14 to 22 μm with a length/width ratio of 1.7 to 2.8, lacked fibrosin bodies, and showed angular/rectangular wrinkling of outer walls. Germ tubes were produced on the perihilar position of conidia. Primary conidia were apically conical, basally rounded to subtruncate, 32 to 42 × 14 to 18 μm, and thus generally smaller than the secondary conidia. The morphological characteristics are consistent with previous descriptions of Oidium hortensiae Jørst. (3,4). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA from KUS-F25514 was amplified with primers ITS5 and P3 and directly sequenced. The resulting sequence of 694 bp was deposited in GenBank (Accession No. JQ669944). There was no ITS sequence data known from powdery mildews on Hydrangea. Therefore, this is the first sequence of O. hortensiae submitted to GenBank. Nevertheless, a GenBank BLAST search of this sequence showed >99% similarity with those of Oidium spp. recorded on crassulacean hosts (e.g. GenBank Accession Nos. EU185641 ex Sedum, EU185636 ex Echeveria, and EU185639 ex Dudleya) (2), suggesting their close phylogenetic relationship. Pathogenicity was confirmed through inoculation by gently pressing diseased leaves onto leaves of five healthy potted mophead hydrangea cv. Emerald plants. Five noninoculated plants of the same cultivar served as controls. Plants were maintained in a greenhouse at 22 ± 2°C. Inoculated plants developed signs and symptoms after 6 days, whereas the control plants remained healthy. The fungus present on the inoculated plants was morphologically identical to that originally observed on diseased plants, fulfilling Koch's postulates. Occurrence of powdery mildew disease on mophead hydrangea is circumglobal (1). To our knowledge, this is the first report of powdery mildew disease caused by O. hortensiae on mophead hydrangea in Korea. Powdery mildew infections in Korea pose a serious threat to the continued production of quality potted mophead hydrangea in polyethylene-film-covered greenhouses. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved March 19, 2012, from http://nt.ars-grin.gov/fungaldatabases/ . (2) B. Henricot. Plant Pathol. 57:779, 2008. (3) A. Schmidt and M. Scholler. Mycotaxon 115:287, 2011. (4) S. Tanda. J. Agric. Sci. Tokyo Univ. Agric. 43:253, 1999.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 999-999 ◽  
Author(s):  
J. K. Choi ◽  
B. S. Kim ◽  
S. H. Hong ◽  
S. E. Cho ◽  
H. D. Shin

Ixeris chinensis (Thunb.) Nakai, known as Chinese ixeris, is distributed from Siberia to Japan, including Korea, Taiwan, and China. The whole plant has been used in folk medicine in Asia (4). In Korea, the plants of Chinese ixeris have been gathered and used as a wild root vegetable. During summer to autumn of 2011, Chinese ixeris leaves were found to be heavily infected with a powdery mildew in several locations of Korea. Symptoms first appeared as thin white colonies, which subsequently developed into abundant hyphal growth on both sides of the leaves, leading to drying of the leaves. The same symptoms on Chinese ixeris leaves were continuously observed in 2012 and 2013. Voucher specimens (n = 10) were deposited at Korea University Herbarium (KUS). Hyphal appressoria were moderately lobed or nipple-shaped. Conidiophores arose from the lateral part of the hyphae, measured 100 to 270 × 10 to 12.5 μm, and produced 2 to 6 immature conidia in chains with a sinuate outline. Basal parts of foot-cells in conidiophores were curved. Conidia were barrel-shaped to ellipsoid, measured 26 to 36 × 13 to 19 μm (length/width ratio = 1.7 to 2.4), lacked fibrosin bodies, and showed reticulate wrinkling of the outer walls. Primary conidia were ovate with conical-obtuse apex and subtruncate base. Germ tubes were produced on the perihilar position of conidia. Chasmothecia were not observed. The morphological characteristics were typical of the Euoidium type anamorph of the genus Golovinomyces, and the fungus measurements and structures were consistent with those of G. sonchicola U. Braun & R.T.A. Cook (1). To confirm the identification, internal transcribed spacer (ITS) region of rDNA sequences from a representative material (KUS-F26212) was amplified using primers ITS5/P3 and sequenced (3). The resulting 416-bp sequence was deposited in GenBank (Accession No. KF819857). A GenBank BLAST search revealed that the isolate showed >99% sequence similarity with those of G. cichoracearum from Sonchus spp. (e.g., AB453762, AF011296, JQ010848, etc.). G. sonchicola is currently confined to G. cichoracearum s. lat. on Sonchus spp., based on molecular sequence analyses (1). Pathogenicity was confirmed through inoculation by gently pressing a diseased leaf onto leaves of five healthy potted Chinese ixeris. Five non-inoculated plants served as controls. Inoculated plants developed symptoms after 6 days, whereas the controls remained symptomless. The fungus present on the inoculated plants was identical morphologically to that originally observed on diseased plants. Powdery mildew infections of I. chinensis associated with Golovinomyces have been known in China (2). To our knowledge, this is the first report of powdery mildew disease caused by G. sonchicola on I. chinensis in Korea. Farming of Chinese ixeris has recently started on a commercial scale in Korea. Though no statistical data are available, we postulate the cultivation area in Korea to be approximately 200 ha, mostly growing without chemical controls. Occurrence of powdery mildews poses a potential threat to safe production of this vegetable, especially in organic farming. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (2) F. L. Tai. Bull. Chinese Bot. Sci. 2:16, 1936. (3) S. Takamatsu et al. Mycol. Res. 113:117, 2009. (4) S. J. Zhang et al. J. Nat. Prod. 69:1425, 2006.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 417-417 ◽  
Author(s):  
D. D. Wu ◽  
G. Fu ◽  
Y. F. Ye ◽  
F. Y. Hu ◽  
H. F. Mou ◽  
...  

The climbing vine, Vitis heyneana Roem. & Schult, is a member of the grape family endemic to Asia. Its fruits are used in wine production, and its roots, stems, and leaves can be used in medicinal materials. This plant is grown in Southwest China, as well as in India, Bhutan, and Nepal. Mulao Autonomous County in Guangxi Province is the only artificial cultivation area in China. During the summer of 2013, a panicle blight and leaf spot were detected on V. heyneana on four farms in Mulao Autonomous County. The symptoms were observed from the onset of florescence through fruit harvest. Brown lesions initially appeared at the base of a panicle and then extended to the whole panicle, finally causing the panicle to die and fruit to drop. When the disease developed on leaves, the symptom initially appeared as small dark brown circular spots, later enlarging into irregular spots (average diameter 6 mm) with a light brown center and dark brown rim. With severe disease, some individual leaves were affected by numerous spots, leading to premature senescence. Small sections of diseased tissue excised from 10 panicle and 10 leaf samples were plated on potato dextrose agar (PDA) and incubated at 28°C. Fungal colonies developed, initially with abundant white aerial mycelium, which turned olivaceous gray after 5 days and formed black pycnidia after 25 days. The conidia were hyaline, ellipsoidal to fusiform, externally smooth, thin-walled, and nonseptate. Thirty conidia were measured; the dimensions were 12.0 to 17.5 × 4.0 to 6.0 μm. Morphological characteristics of the isolates were similar to the descriptions of Neofusicoccum parvum (3). The isolate MPT-1 was selected as a representative for molecular identification. Genomic DNA was extracted and used for PCR to amplify the internal transcribed spacer (ITS) region and partial translation elongation factor 1-alpha (EF1-α) gene, using primers ITS1/ITS4 and EF1-728F/EF1-986R, respectively. The obtained ITS sequence (GenBank Accession No. KJ599627) and EF1-α sequence (KM921768) showed >99% homology with several GenBank sequences of N. parvum. Morphological and molecular results confirmed the isolate as N. parvum. For pathogenicity tests, detached, young healthy panicles and leaves of V. heyneana were surface-sterilized, wounded by sterile needle, and inoculated with mycelial plugs (3 mm in diameter) of four N. parvum isolates. Ten panicles and 10 leaves were used for every isolate. Control panicles and leaves were treated with sterile PDA plugs. All the samples were placed in a humid chamber (RH 90%, 28°C, 12 h of light) for 3 days. Symptoms similar to those observed in the field developed on all panicles and leaves inoculated with N. parvum isolates. N. parvum was reisolated from all inoculated, symptomatic tissues. The controls remained symptomless. N. parvum has been reported to cause trunk canker on V. vinifera (2), dieback on Cupressus funebris (3), and a leaf spot on Myristica fragrans (1). To our knowledge, this is the first report of N. parvum causing panicle blight and leaf spot on V. heyneana in China. Panicle blight caused a large number of fruits to drop and reduced the yield seriously. Some effective measures should be taken to control this disease. References: (1) V. Jayakumar et al. New Dis. Rep. 23:19, 2011. (2) J. Kaliternam et al. Plant Dis. 97:1656, 2013. (3) S. B. Li et al. Plant Dis. 94:641, 2010.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 1029-1029 ◽  
Author(s):  
J. M. French ◽  
R. A. Stamler ◽  
J. J. Randall ◽  
N. P. Goldberg

Phytophthora nicotianae Breda de Haan was isolated from turning tomato fruit (Solanum lycopersicum L.) in August 2010 from a garden in central New Mexico. Symptoms typical of buckeye rot including brown, water-soaked, necrotic lesions with concentric rings were observed on three tomato fruit. Tissue from each fruit was surface sterilized and plated onto water agar and incubated at room temperature. After 72 h, colonies of Phytophthora (identified by the presence of coenocytic hyphae and papillate sporangia) were found and subcultured by hyphal tips to V8 agar amended with ampicillin (250 mg/liter), rifampicin (10 mg/liter), and pimaricin (0.2% wt/vol). The isolates of Phytophthora were identified as P. nicotianae based on morphological characteristics and DNA analysis. Sporangia were sharply papillate, noncaducous, and ovoid to spherical. The average sporangium size was 44.5 × 35.5 μm with a length-to-width ratio of 1.26. Chlamydospores, both terminal and intercalary, were spherical to ovoid and averaged 38.9 × 37.5 μm. PCR amplification and sequence analysis on three isolates from the infected tomato tissue was performed using primers ITS4 and ITS6 that amplify the 5.8S rDNA and ITSI and ITSII internal transcribed spacers (1,2). A band of approximately 890 bp was amplified and directly sequenced (GenBank Accession No. HQ711620). A BLAST search of the NCBI total nucleotide collection revealed a 100% similarity to multiple P. nicotianae isolates previously sequenced. Pathogenicity tests with sequenced P. nicotianae isolates were performed to confirm virulence on tomato fruit. Tomatoes were surface sterilized with 95% ethanol and 0.1 ml of a P. nicotianae zoospore suspension (10,000 zoospores/ml) or sterile water was pipetted onto the surface of the tomato fruit. After 5 days in a humidity chamber, all three inoculated tomatoes had expanding water-soaked, circular lesions and the negative control showed no disease symptoms. P. nicotianae was successfully reisolated from the inoculated tomato tissue and the ITS region was sequenced to confirm its identity. Although the disease has been reported in many other states since the early 1900s, to our knowledge, this is the first report of P. nicotianae causing disease on tomato in New Mexico. References: (1) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Sign in / Sign up

Export Citation Format

Share Document