scholarly journals First Report of Leaf and Stem Downy Blight of Longan Seedlings Caused by Peronophythora litchii in Taiwan

Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1224-1224 ◽  
Author(s):  
P.-J. Ann ◽  
J.-N. Tsai ◽  
H.-R. Yang

Fruit downy blight caused by Peronophythora litchii Chen ex Ko et al. is an important disease of litchi (Litchi chinensis Sonn.) in Taiwan, especially in rainy seasons. Previous records indicate litchi as the only natural host of P. litchii, but this pathogen was found on seedlings of longan (Euphoria longana Lamarck) in 2000. Young seedlings of longan that had emerged in a litchi orchard near Caotun, Nantou County, showed symptoms of droopy leaves and leaf blight. Water-soaked lesions appeared on young leaves, which turned into brown, round or irregular lesions (about 3 to 5 cm long). Diseased leaves withered and collapsed eventually. Dark brown lesions were found on stems of some infected seedlings but none of the infected seedlings were killed. Also, no symptoms were found on mature leaves. The pathogen produced numerous sporangia on sporangiophores on diseased leaves under humid conditions. The disease on young seedlings was observed again in another litchi orchard at Caotun, Nantou County, in 2003. P. litchii was consistently isolated from diseased leaves. Two isolates from colonized longan seedlings, Tari 20250 collected in 2000 and Tari 23301 collected in 2003, were used for further studies. Both isolates produced large numbers of sporangia on long sporangiophores when cultured on 5% V8 agar (5% V8 juice, 0.02% CaCO3, and 1.5% agar). Sporangia produced on the same sporangiophores matured almost simultaneously. Sporangiophores 240 to 1,600 μm (mean 623 μm) branched dichotomously two to eight times. Sporangia were oval or lemon-shaped with semispherical papilla and deciduous with very short pedicels (2 to 5 μm). The dimension was 25 to 55 (35.25) × 15 to 27.5 (21.2) μm for sporangia and 0.5 to 1 (0.55) μm for pedicels. The length/breadth (L/B) ratio of sporangia was 1.3 to 2.14 (1.67). Both isolates produced numerous oospores on 5% V8 agar cultures in darkness. Artificial inoculation tests were done by spraying 5 mL of sporangial suspension (1,000 sporangia/mL) on each longan seedling without wounding. Results showed that both longan isolates of P. litchii were pathogenic on young longan seedlings, causing symptoms similar to those observed on leaves and stems of naturally infected longan seedlings in litchi orchards. Also, both longan isolates of P. litchii caused downy blight on fruits of litchi (L. chinensis var black leaf) by artificial inoculation tests. Moreover, a P. litchi isolate from litchi caused symptoms of leaf blight on young longan seedlings. P. litchii was reisolated from the infected longan tissues. The ribosomal internal transcribed spacer (ITS) sequence confirmed that the longan isolate Tari 20250 (GenBank Accession No. JQ814693) was 100% identical to other P. litchii isolates (GenBank Accession Nos. Gu111613 to Gu111615). To our knowledge, this is the first report of longan as a natural host of P. litchii. The study also suggests that P. litchii on volunteer longan seedlings in litchi orchards may be a potential source of inoculum for fruit downy blight of litchi. References: (1) C. C. Chen. Special Publ. Coll. Agric., Natl. Taiwan Univ. 10:1, 1961. (2) W. H. Ko et al. Mycologia 70:380, 1978.

Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 287-287
Author(s):  
K. S. Han ◽  
J. H. Park ◽  
S. E. Cho ◽  
H. D. Shin

Pachysandra terminalis Siebold & Zucc., known as Japanese pachysandra, is a creeping evergreen perennial belonging to the family Buxaceae. In April 2011, hundreds of plants showing symptoms of leaf blight and stem canker with nearly 100% incidence were found in a private garden in Suwon, Korea. Plants with the same symptoms were found in Seoul in May and Hongcheon in August. Affected leaves contained tan-to-yellow brown blotches. Stem and stolon cankers first appeared as water soaked and developed into necrotic lesions. Sporodochia were solitary, erumpent, circular, 50 to 150 μm in diameter, salmon-colored, pink-orange when wet, and with or without setae. Setae were hyaline, acicular, 60 to 100 μm long, and had a base that was 4 to 6 μm wide. Conidiophores were in a dense fascicle, not branched, hyaline, aseptate or uniseptate, and 8 to 20 × 2 to 3.5 μm. Conidia were long, ellipsoid to cylindric, fusiform, rounded at the apex, subtruncate at the base, straight to slightly bent, guttulate, hyaline, aseptate, 11 to 26 × 2.5 to 4.0 μm. A single-conidial isolate formed cream-colored colonies that turned into salmon-colored colonies on potato dextrose agar (PDA). Morphological and cultural characteristics of the fungus were consistent with previous reports of Pseudonectria pachysandricola B.O. Dodge (1,3,4). Voucher specimens were housed at Korea University (KUS). Two isolates, KACC46110 (ex KUS-F25663) and KACC46111 (ex KUS-F25683), were accessioned in the Korean Agricultural Culture Collection. Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced using ABI Prism 337 automatic DNA sequencer (Applied Biosystems, Foster, CA). The resulting sequence of 487 bp was deposited in GenBank (Accession No. JN797821). This showed 100% similarity with a sequence of P. pachysandricola from the United States (HQ897807). Isolate KACC46110 was used in pathogenicity tests. Inoculum was prepared by harvesting conidia from 2-week-old cultures on PDA. Ten young leaves wounded with needles were sprayed with conidial suspensions (~1 × 106 conidia/ml). Ten young leaves that served as the control were treated with sterile distilled water. Plants were covered with plastic bags to maintain a relative humidity of 100% at 25 ± 2°C for 24 h. Typical symptoms of brown spots appeared on the inoculated leaves 4 days after inoculation and were identical to the ones observed in the field. P. pachysandricola was reisolated from 10 symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in the United States, Britain, Japan, and the Czech Republic (2,3), but not in Korea. To our knowledge, this is the first report of P. pachysandricola on Pachysandra terminalis in Korea. Since this plant is popular and widely planted in Korea, this disease could cause significant damage to nurseries and the landscape. References: (1) B. O. Dodge. Mycologia 36:532, 1944. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , September 24, 2011. (3) I. Safrankova. Plant Prot. Sci. 43:10, 2007. (4) W. A. Sinclair and H. H. Lyon. Disease of Trees and Shrubs. 2nd ed. Cornell University Press, Ithaca, NY, 2005.


Plant Disease ◽  
2010 ◽  
Vol 94 (11) ◽  
pp. 1378-1378 ◽  
Author(s):  
U. P. Lopes ◽  
L. Zambolim ◽  
H. S. S. Duarte ◽  
P. G. C. Cabral ◽  
O. L. Pereira ◽  
...  

There are more than 300 blackberry (Rubus) species worldwide. Rubus brasiliensis Mart. is a native Brazilian species found in tropical forests. In January 2009, samples of R. brasiliensis with severe leaf blight were collected from an area of rain forest in the city of São Miguel do Anta, State of Minas Gerais, Brazil. Dark spots began developing in the young leaves and progressed to necrotic spots with occasional twig dieback. From the spots, a fungus was isolated with the following morphology: acervuli that were 20 to 50.0 × 50 to 125.0 μm and hyaline amerospores that were ellipsoid and fusiform and 7.5 to 23.75 × 2.5 to 5.0 μm. On the basis of these morphological characteristics, the fungus was identified as Colletotrichum acutatum. In Brazil, C. acutatum is reported in apple, citrus, strawberry, peach, plum, nectarine, olive, medlar, and yerba-mate, but it was not reported as the causal agent of leaf blight in R. brasiliensis. A sample was deposited in the herbarium at the Universidade Federal de Viçosa, Minas Gerais, Brazil (VIC 31210). One representative isolate, OLP 571, was used for pathogenicity testing and molecular studies. Identity was confirmed by amplifying the internal transcribed spacer (ITS) regions of the ribosomal RNA with primers ITS4 (3), CaInt2 (a specific primer for C. acutatum [2]) and CgInt (a specific primer for C. gloeosporioides [1]). Isolates of C. acutatum (DAR78874 and DAR78876) and C. gloeosporioides (DAR78875) obtained from Australian olive trees were used as positive controls. The primers ITS4 and CaInt2 amplified a single DNA product of 500 bp expected for C. acutatum. OLP 571 was grown for 7 days on potato dextrose agar. Young leaves of R. brasiliensis were inoculated with a conidial suspension (106 conidia/ml) on young leaves. Inoculated plants were maintained in a moist chamber for 2 days and subsequently in a greenhouse at 25°C. Necrotic spots similar to those described were detected on young leaves 3 days after the inoculation. Control leaves, on which only water was sprayed, remained healthy. The same fungus was reisolated from the inoculated symptomatic tissues. To our knowledge, this is the first report of C. acutatum causing leaf blight in the native species of R. brasiliensis in Brazil. References: (1) P. R. Mills et al. FEMS Microbiol. Lett. 98:137, 1999. (2) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2003 ◽  
Vol 87 (7) ◽  
pp. 872-872 ◽  
Author(s):  
J. Th. J. Verhoeven ◽  
T. M. Willemen ◽  
J. W. Roenhorst ◽  
R. A. A. van der Vlugt

In 2002, a breeding company submitted several samples of tomato (Lycopersicon esculentum) for diagnosis. Samples originated in Indonesia and were taken from protected and nonprotected crops. Plants exhibited severe chlorosis on fully expanded leaves, while young leaves were symptomless. Symptoms resembled those of the criniviruses Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV). Moreover, large numbers of whiteflies, potential vectors of these viruses, had been observed at the plots with symptomatic plants. A reverse transcription-polymerase chain reaction (RT-PCR) with specific primers for TICV (1) yielded amplicons of the expected size of approximately 500 bp for all samples. One of the amplicons was sequenced (Genbank Accession No. AY221097) and revealed more than 98.9% identity to six isolates of TICV in NCBI Genbank. cDNA synthesis using the universal crinivirus primer HSP_M2-DW (5′ -TCRAARGTWCCKCCNCCRAA-3′) followed by PCR with a ToCV specific primerset (ToCV-UP 5′-TCATTAAAACTCAATGGGACCGAG-3′ and ToCV-DW 5′-GCGACGT AAATTGAAACCC-3′) was negative in all cases. Grafting of symptomatic shoots onto healthy tomato seedlings of cv. Money-maker showed transmission of the virus, as chlorosis appeared on fully expanded leaves of lateral shoots after 6 weeks. The presence of TICV in the graft-inoculated plants was confirmed by RT-PCR. Furthermore, mechanical inoculation to a range of herbaceous test plants did not evoke any virus symptoms, indicating the absence of mechanically transmissible viruses. Although other nonmechanically transmissible viruses cannot be fully excluded, the results together with the symptoms observed, indicate that TICV is the cause of the disease. TICV has been reported from Greece, Italy, Japan, Spain, and the United States, but to our knowledge, this is the first report of TICV in Indonesia. Reference: (1) A. M. Vaira et al. Phytoparasitica 30:290, 2002.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 721-724 ◽  
Author(s):  
M.T. Mmbaga ◽  
E.C. Nnodu

Cornelian cherry (Cornus mas L.) has been free of disease and pest problems until recently when a bacterial leaf blight caused by Pseudomonas syringae was reported. Since its first observation in middle Tennessee in 1999, the disease has become endemic in the nursery where it was first discovered. The objective of this study was to assess the disease, evaluate factors that favor disease development, and develop disease management strategies. Cool temperatures of 20 to 24 °C (day) and 10 to 15 °C (night) were most favorable to the disease and young leaves were highly susceptible while mature leaves were resistant to infection. Leaf wounding increased the susceptibility of leaves and mature leaves developed infection at 28 °C, temperature at which nonwounded leaves were completely resistant to infection. Results from this study also showed that plant propagation from seemingly healthy branches of infected plants may have perpetuated the disease at the nursery. Six chemicals—Phyton-27 (copper sulfate), Camelot (copper salt of fatty acids), Agri-Mycin 17 (streptomycin), Kocide 101 (copper hydroxide), Basicop (elemental copper 53%), and, Bordeaux mixture (cupric sulfate + lime) were evaluated for disease control. Phyton-27, and Agri-Mycin—were most effective and reduced disease severity to 10% of foliage showing disease symptoms. Information from this study will be useful in designing effective disease management strategies.


Plant Disease ◽  
2020 ◽  
Author(s):  
Jihye Woo ◽  
Jeong Eun Kim ◽  
Mikyeong Kim ◽  
Byeongjin Cha

Ilex integra, also called Mochi tree, is an woody ornamental common in Asia, particularly in Korea, China, Japan, and Taiwan. Anthracnose, caused by Colletotrichum spp., is an economically important disease worldwide, affecting both fruit and seed quality. In April 2019, symptoms of Anthracnose were observed on leaves from several Mochi trees in an urban planting in Wando-gun, South Korea. Irregularly shaped, light-to-dark brown spots of 1-4mm were observed on young leaves. The lesions coalesced as each spot enlarged, flat and black fruiting bodies (acervuli) occurred on the brown lesions. Four symptomatic leaves were collected; fractions were cut from symptomatic tissue, including healthy tissue, then were disinfected with 1% sodium hypochlorite and 70% ethanol, and placed on potato dextrose agar (PDA). After dark-incubation at 25℃ for 7 days two isolates were obtained, the fungal colonies appeared as white to light gray mycelium, then becoming dark and orange to pink on the underside. After acervuli were produced on the plate, orange-red conidial masses erupted. Conidia observed from two isolates were hyaline, 1-celled, and oblong with round to acute apices, and measured 7 to 12 × 2 to 5 μm (mean ± SD: 9.29 ±2.26 × 3.68± 1.31 μm) (n=30). Genomic DNA was extracted and multi-locus sequencing was performed with one representative isolate using the internal transcribed spacer (ITS) (White et al. 1990), actin (ACT) genes, chitin synthase 1 gene (CHS-1) (Carbone and Kohn 1999), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Calmodulin (CAL) (Weir et al. 2012) and submitted. Blast search results showed that the isolate had 100%, 98.45%, 99.74%, 100%, and 100% nucleotide sequence identity with those of C. fioriniae (MT607651, MH717601, MG666441, MN895544, MN974144) respectively (Jamin and Mateu 2008). The five sequences were deposited in NCBI GenBank (Accession No: MT457472, MT465884, MT465885, MT465886, MT465887), which were assigned to ITS, ACT, CHS-1, GAPDH, and CAL regions, respectively. Based on the morphology (Shivas and Tan 2009) and molecular characterization (Guerber et al. 2003), the isolate was identified as C. fioriniae. To confirm pathogenicity, a conidial suspension (10⁶ conidia/ml) of the sequenced isolate was used to inoculated, young and mature leaves of a 4-year-old Mochi tree. Ten leaves of the seedling were disinfected with 70% ethanol, then were wounded with a toothpick. The conidial suspension (20 µl) was placed on the wound. The inoculated plant and control plants were tested with sterilized water and incubated at 25℃ in a moist chamber. The pathogenicity test was repeated three times. Typical spots were observed on the young leaves 2 days after inoculation, whereas they were observed on the mature leaves 7 days after inoculation. Acervuli developed on both young and mature leaves 5 and 20 days after treatment, respectively. The control plants did not show symptoms, and the fungus was re-isolated from the inoculated plant; thus, fulfilling Koch’s Postulates. In Korea, C. fioriniae has been recorded as a pathogen of fruit (apple, eggplant and peach), but this is the first report of the fungus causing anthracnose on Mochi tree. The pathogen has been reported on leaves of a different Ilex species in the eastern USA (Farr and Rossman 2020). Although this new disease of I. integra is limited occurrence, C. fioriniae may be able to infect other plant species in South Korea.


Author(s):  
O B Ojewuyi

Proximate composition, phytochemical and mineral composition of young and mature Polyalthia longifolia Sonn. leaves were investigated using standard analytical procedures. Young leaves of Polyalthia longifolia contained 9% protein, 4% ash, 0.21% lipid, 25% fibre, 8% moisture and 54% carbohydrate while the mature leaves contained 10% protein, 5% ash, 0.26% lipid, 19% fibre, 9% moisture and 57% carbohydrates. The results for the quantitative phytochemicals revealed that the young leaves contained 3.91 (ppm) tannins, 0.34 (ppm) phenols and 62% flavonoids with the mature samples showing a relative result of 3.69 (ppm) tannins, 0.33 (ppm) phenols and 63% flavonoids. The mineral analysis of both samples showed that they contained appreciable quantities of minerals with the mature sample having higher concentrations of Na (30.03 mg/100 g), K (23.55 mg/100 g), Ca (89.18 mg/100 g) and Mg (27.55 mg/100 g) relative to Na (20.30 mg/100 g), K (16.93 mg/100 g), Ca (57.03 mg/100 g) and Mg (14.48 mg/100 g) found in the young leaves. The study showed that the leaves examined contained high levels of carbohydrates and fibre, low fat and phenols but very rich in minerals. These findings suggest that the leaves of Polyalthia longifolia might be a potential source of carbohydrates, fibre, phytochemicals and mineral elements for human and animal use.


Agrotek ◽  
2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Antonius Suparno ◽  
Opalina Logo ◽  
Dwiana Wasgito Purnomo

Sweet potato serves as a staple food for people in Jayawijaya. Many cultivars of sweet potatoes have been cultivated by Dani tribe in Kurulu as foot for their infant, child and adult as well as feeding especially for pigs. Base on the used of sweet potatoes as food source for infant and child, this study explored 10 different cultivars. As for the leaf morphology, it was indentified that the mature leaves have size around 15 � 18 cm. general outline of the leaf is reniform (40%), 60% have green colour leaf, 50% without leaf lobe, 60% of leaf lobes number is one, 70% of shape of central leaf lobe is toothed. Abazial leaf vein pigmentation have purple (40%), and petiole pigmentation is purple with green near leaf (60%), besides its tuber roots, sweet potatoes are also harvested for its shoots and green young leaves for vegetables.


Author(s):  
Shaozhao Qin ◽  
Xiaoyulong Chen ◽  
Xiaohui Zhou ◽  
Jin Zhao ◽  
Ivan Baccelli ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shugang Zhao ◽  
Hongxia Wang ◽  
Kai Liu ◽  
Linqing Li ◽  
Jinbing Yang ◽  
...  

Abstract Background Tissue culture is an effective method for the rapid breeding of seedlings and improving production efficiency, but explant browning is a key limiting factor of walnut tissue culture. Specifically, the polymerization of PPO-derived quinones that cause explant browning of walnut is not well understood. This study investigated explants of ‘Zanmei’ walnut shoot apices cultured in agar (A) or vermiculite (V) media, and the survival percentage, changes in phenolic content, POD and PPO activity, and JrPPO expression in explants were studied to determine the role of PPO in the browning of walnut explants. Results The results showed that the V media greatly reduced the death rate of explants, and 89.9 and 38.7% of the explants cultured in V media and A media survived, respectively. Compared with that of explants at 0 h, the PPO of explants cultured in A was highly active throughout the culture, but activity in those cultured in V remained low. The phenolic level of explants cultured in A increased significantly at 72 h but subsequently declined, and the content in the explants cultured in V increased to a high level only at 144 h. The POD in explants cultured in V showed high activity that did not cause browning. Gene expression assays showed that the expression of JrPPO1 was downregulated in explants cultured in both A and V. However, the expression of JrPPO2 was upregulated in explants cultured in A throughout the culture and upregulated in V at 144 h. JrPPO expression analyses in different tissues showed that JrPPO1 was highly expressed in stems, young leaves, mature leaves, catkins, pistils, and hulls, and JrPPO2 was highly expressed in mature leaves and pistils. Moreover, browning assays showed that both explants in A and leaf tissue exhibited high JrPPO2 activity. Conclusion The rapid increase in phenolic content caused the browning and death of explants. V media delayed the rapid accumulation of phenolic compounds in walnut explants in the short term, which significantly decreased explants mortality. The results suggest that JrPPO2 plays a key role in the oxidation of phenols in explants after branch injury.


Sign in / Sign up

Export Citation Format

Share Document