scholarly journals Relationship Between Fungicide Sensitivity and Control of Gummy Stem Blight of Watermelon Under Field Conditions

Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1780-1784 ◽  
Author(s):  
A. Thomas ◽  
D. B. Langston ◽  
H. F. Sanders ◽  
K. L. Stevenson

Gummy stem blight (GSB), caused by the fungus Didymella bryoniae, is the most destructive disease of watermelon and is managed primarily with fungicides. D. bryoniae has developed resistance to many fungicides that were once very effective, including azoxystrobin, boscalid, and thiophanate-methyl. Field experiments were conducted in Tifton (TN) and Reidsville (RV), GA in 2009 and 2010 to establish a relationship between frequency of resistance to a fungicide based on in vitro assays and its efficacy in the management of GSB. Frequency of resistance to boscalid, thiophanate-methyl, and azoxystrobin was >0.80 in isolates collected from nontreated plots in both locations and years. All isolates collected after six applications of boscalid, thiophanate-methyl, or azoxystrobin were resistant to the respective fungicide. All isolates collected from treated and nontreated plots were sensitive to tebuconazole and difenoconazole. GSB severity was assessed on a weekly basis from 63 days after planting. GSB severity in plots treated with boscalid, thiophanate-methyl, or azoxystrobin was not significantly different from that in the nontreated plots (39%, TN-2009; 45%, TN-2010; and 16%, RV-2010). GSB severity in tebuconazole-treated plots (27%, TN-2009; 14%, TN-2010; and 4%, RV-2010) was significantly lower than all other treatments and the nontreated control. There was a consistent negative association between frequency of fungicide resistance and disease control in the field. Thus, knowledge of the frequency of fungicide resistance in the pathogen population will be helpful in selecting the most effective fungicides for the management of GSB in watermelon fields.

2012 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Katherine L. Stevenson ◽  
Anthony P. Keinath ◽  
Anna Thomas ◽  
David B. Langston ◽  
Pamela D. Roberts ◽  
...  

The fungicide Pristine, a commercial mixture of pyraclostrobin and boscalid, has been used widely on watermelon and other cucurbits to control gummy stem blight, caused by the fungus Didymella bryoniae. Since 2007, isolates of D. bryoniae insensitive to boscalid have been found in Georgia, Indiana, and South Carolina. Most isolates of D. bryoniae obtained in 2009 and 2010 from diseased watermelon leaves collected in several counties in Florida and North Carolina were found to be insensitive to boscalid using in vitro assays. Gummy stem blight would not be effectively managed with Pristine in any of the counties where samples were collected due to the high frequency of insensitivity to boscalid. Fortunately growers can instead use several triazole fungicides registered for use on cucurbits since 2009. Accepted for publication 30 March 2012. Published 18 May 2012.


Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 729-732 ◽  
Author(s):  
J. A. LaMondia ◽  
S. M. Douglas

Botrytis cinerea was isolated from infected plants in six greenhouses in Connecticut. Forty-five isolates were evaluated in vitro to determine fungicide sensitivity to benzimidazole (benomyl and thiophanate-methyl) and dicarboximide fungicides (vinclozolin and iprodione). B. cinerea isolates with fungicide resistance were recovered from each greenhouse sampled. Benzimida-zole resistance was more common than dicarboximide resistance (74 to 76% versus 36 to 43%, respectively). Multiple fungicide resistance was common. Nineteen isolates were resistant to both a benzimidazole and a dicarboximide fungicide. The level (EC50) of resistance to dicer-boximides was low compared with resistance to benzimidazoles. Isolate growth rate was not correlated to fungicide sensitivity or EC50. Fungicide resistance was apparently unrelated to the patterns of fungicide use in greenhouses sampled.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 807-813 ◽  
Author(s):  
Young-Ki Jo ◽  
Amy L. Niver ◽  
Joseph W. Rimelspach ◽  
Michael J. Boehm

Managing dollar spot, the most common and chronic disease on intensively cultivated turfgrass, relies on the judicious use of fungicides. The heavy use of fungicides has led to the development of isolates of Sclerotinia homoeocarpa insensitive to several classes of fungicides, including benzimidazoles, demethylation-inhibitors, and dicarboximides. In vitro fungicide sensitivity assays using single discriminatory concentrations of thiophanate-methyl, propiconazole, and iprodione were developed in this study for evaluating field efficacy of these fungicides and the prevalence of fungicide insensitivity within S. homoeocarpa isolated from golf courses throughout Ohio. Discriminatory concentrations for these fungicides were determined to be: thiophanate-methyl = 1,000 μg a.i. ml-1, propiconazole = 0.1 μg a.i. ml-1, and iprodione = 1.0 μg a.i. ml-1. Effective concentration that produces 50% inhibition (EC50) was estimated based on relative mycelial growth of S. homoeocarpa on potato dextrose agar (PDA) versus PDA amended with the discriminatory concentration of each fungicide. Field trials conducted at 3 locations in 2002 and 10 locations in 2003 revealed that the in vitro assays accurately predicted field efficacy for thiophanate-methyl. When used to screen 192 S. homoeocarpa isolates collected previously from 55 golf courses throughout Ohio, the in vitro assays revealed that 34 of the golf courses sampled had S. homoeocarpa resistant to thiophanate-methyl. S. homoeocarpa with reduced in vitro sensitivities was isolated from 18 and 1 golf courses for propiconazole and iprodione, respectively.


HortScience ◽  
2000 ◽  
Vol 35 (6) ◽  
pp. 1132-1140 ◽  
Author(s):  
Todd C. Wehner ◽  
Nischit V. Shetty

Gummy stem blight (Didymella blight), caused by Didymella bryoniae (Auersw.) Rehm and its anamorph Phoma cucurbitacearum (Fr.:Fr.) Sacc., is the second most important disease of cucumber (Cucumis sativus L.) in North Carolina after root knot nematodes Meloidogyne sp. Both Didymella blight and Phoma blight, caused by Phoma exigua Desm., have similar symptoms and control practices, and are generally referred to as gummy stem blight. In order to determine whether resistance existed to North Carolina isolates of D. bryoniae, 851 cultigens [cultivars, breeding lines, and plant introduction (PI) lines] were evaluated in the field. Plants were inoculated with one selected isolate (highly pathogenic in preliminary greenhouse tests) at the vine tip-over stage. They were rated for foliage lesion size and number on a 0 to 9 visual scale (0 = no disease, 9 = plant killed) and average ratings for 10 plants per plot were analyzed. The ratings ranged from 2.0 (highly resistant) to 8.5 (highly susceptible) with a mean of 6.2. The most resistant breeding lines and PI accessions were PI 200815, PI 390243, `LJ 90430', PI 279469, and PI 432855. The most resistant cultivars were `Homegreen #2', `Little John', `Transamerica', and `Poinsett 76'. The most susceptible cultigens in the study were PI 288238, PI 357843, PI 357865, and PI 167134. Two popular cultivars in North Carolina, `Calypso' and `Dasher II', were moderately resistant.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1018-1024 ◽  
Author(s):  
Anthony P. Keinath

Seedlings of watermelon are susceptible to Didymella bryoniae, the cucurbit pathogen that causes gummy stem blight, particularly when they are grown in the greenhouse for use as transplants. Seedlings of bottle gourd (Lagenaria siceraria) and interspecific hybrid squash (Cucurbita moschata × C. maxima) that are used as rootstocks for grafting watermelon are susceptible to gummy stem blight when wounded. Nonwounded rootstock seedlings of both genera were as susceptible to gummy stem blight as seedless watermelon. Because grafted plants must be misted or held at high relative humidity for 1 week so the graft union will heal, fungicides may be necessary to manage gummy stem blight under these disease-conducive environmental conditions. Nine fungicides were applied as foliar treatments at labeled rates per 467 liters/ha water to nongrafted seedlings of watermelon and five rootstock cultivars. Fluopyram + tebuconazole injured all five bottle gourd and hybrid squash cultivars and stunted watermelon and hybrid squash seedlings. Cyprodinil + difenoconazole injured all five rootstock cultivars and watermelon. Tebuconazole stunted bottle gourd and watermelon seedlings. Four of the five fungicides that were not phytotoxic reduced incidence and severity of gummy stem blight on seedless watermelon grafted onto bottle gourd Emphasis and hybrid squash Strong Tosa. Difenoconazole and cyprodinil were more effective than mancozeb or cyprodinil + fludioxonil, which were more effective than thiophanate-methyl, which was not significantly different from the water control (P = 0.01). Nongrafted watermelon seedlings and watermelon seedlings grafted onto watermelon as the rootstock were as susceptible to gummy stem blight as watermelon seedlings grafted onto cucurbits. Although difenoconazole and cyprodinil are not registered currently on cucurbits, transplant growers can apply mancozeb or cyprodinil + fludioxonil to manage gummy stem blight on watermelon and rootstock seedlings during greenhouse production.


2017 ◽  
Vol 45 (1) ◽  
pp. 173-187
Author(s):  
Abdel-Fattah El-Wakil ◽  
Amal Khalil ◽  
Ibrahim El -Abbasi

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3055
Author(s):  
Elisabetta Stanzani ◽  
Leire Pedrosa ◽  
Guillaume Bourmeau ◽  
Oceane Anezo ◽  
Aleix Noguera-Castells ◽  
...  

Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients’ prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.


Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 815-822 ◽  
Author(s):  
Anthony P. Keinath

To prevent yield reductions from gummy stem blight, fungicides often must be applied to watermelon (Citrullus lanatus) and muskmelon (Cucumis melo). Didymella bryoniae, the ascomycete fungus that causes gummy stem blight, is resistant to thiophanate-methyl, quinone-outside inhibitors (QoI), boscalid, and penthiopyrad. In place of these fungicides, premixtures of cyprodinil and fludioxonil (Switch 62.5WG) or cyprodinil and difenoconazole (Inspire Super 2.82SC) are used. The objectives of this study were to examine baseline isolates of D. bryoniae for sensitivity to cyprodinil and fludioxonil and to determine the efficacy of cyprodinil-fludioxonil and cyprodinil-difenoconazole against isolates resistant to QoI fungicides and boscalid. Colony diameters of 146 isolates of D. bryoniae collected in South Carolina and other U.S. states prior to 2008 were measured on glucose minimal medium amended with cyprodinil or fludioxonil. Mean effective concentration values that reduced relative colony diameter by 50% were 0.052 and 0.099 mg/liter cyprodinil and fludioxonil, respectively. In autumn 2008, 2009, and 2011, field-grown watermelon inoculated with isolates resistant to QoI fungicides and boscalid was treated with boscalid-pyraclostrobin alternated with chlorothalonil, cyprodinil-fludioxonil alternated with chlorothalonil, cyprodinil-difenoconazole alternated with chlorothalonil, tebuconazole alternated with chlorothalonil, chlorothalonil, or water. In 2008 and 2011, both cyprodinil treatments reduced disease severity compared with the water control treatment and chlorothalonil alone. In 2008 and 2009, cyprodinil-fludioxonil reduced severity compared with boscalid-pyraclostrobin and, in 2008, cyprodinil-difenoconazole and tebuconazole also did. Use of cyprodinil-fludioxonil should control gummy stem blight effectively and may delay development of resistance to cyprodinil and fludioxonil in D. bryoniae. However, because Botrytis cinerea became resistant to both cyprodinil and fludioxonil after multiple applications of cyprodinil-fludioxonil per season, prudent fungicide rotations should be followed when using cyprodinil-containing fungicides against D. bryoniae.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1001-1007 ◽  
Author(s):  
G. L. Miller ◽  
M. D. Soika ◽  
L. P. Tredway

Fairy ring species induce symptoms on putting greens mostly indirectly, by modifying the soil physical or chemical properties. Therefore, preventive rather than curative fungicide applications may be more effective in managing fairy ring. Two field experiments were conducted on a creeping bentgrass research green to evaluate fairy ring control from preventive fungicide applications. A 3-year study investigated the optimal rate and soil temperature-based timing of a preventive application of triadimefon and tebuconazole. A 2-year study evaluated the impact of irrigation timing and fungicide + surfactant tank mixtures on the efficacy of preventive applications of triadimefon and triticonazole. Fungicide-treated plots in both studies exhibited less fairy ring severity than untreated plots. Data suggest that a 5-day average soil temperature range of 13 to 16°C may be suitable for initiating preventive applications. Symptoms occurred earlier in plots treated with a surfactant tank mix than in those treated with fungicide alone. Irrigation timing had no effect on fungicide performance. The sensitivity of 16 isolates representing major fairy ring species to flutolanil, propiconazole, tebuconazole, triadimefon, and triticonazole was determined with a mycelial growth assay. No significant differences in fungicide sensitivity were detected among species. Isolates had significantly higher 50% effective concentration values for triadimefon than for the other fungicides tested.


Sign in / Sign up

Export Citation Format

Share Document