scholarly journals Occurrence of root rot caused by Pythium aphanidermatum on mung bean (Vigna radiata) in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Qiang Yan ◽  
Yaqun Hu ◽  
Qinxue Zhang ◽  
Xingxing Yuan ◽  
Ranran Wu ◽  
...  

In Aug 2019, approximately 10% of mung bean plants at the experimental farm of the Jiangsu Academy of Agricultural Science (32.03 N; 118.88 E) showed symptoms of stunting and wilting. Brown and water-soaked stem lesions were often observed at the base of the diseased plants. In severe cases, the plants collapsed and cumulous aerial mycelia were visible on the basal stem surface (Figure S1 A). To identify the causal agent, a total of 20 tissue fragments (5 mm long) were excised from roots and basal stems of five symptomatic plants. The fragments were surface sterilized in 2% sodium hypochlorite solution then plated on 2.5% potato dextrose agar (PDA) plates containing 10 μg/mL pimaricin, 100 μg/mL ampicillin, 10 μg/mL rifampicin, and 10 μg/mL pentachloronitrobenzene (PARP; Beckerman et al. 2017). After 3-4 days incubation at 25oC in dark, 14 colonies with white and cumulous mycelia grew from the tissue pieces (named as JS19-1 to JS19-14). JS19-1 and JS19-2 were purified by hyphal tipping, then grown on PDA medium for 7 days for morphological observation using a compound microscope (Figure S1 B, C). Width of coenocytic hyphae ranged from 3.7 to 8.9 (avg. 6.1, n=20) μm. Terminal oogonia were globose and with a diameter of 13.8 to 25.8 (avg. 22, n=20) μm. Antheridia were barrel-shaped, and mostly intercalary, sometimes terminal. Most of antheridia were diclinous, with 6.2 to 12.5 (avg. 9.3, n=20) μm in width and 7.6 to 15.3 (avg. 12.8, n=20) μm in length. Oogonia were fertilized with one or two (rare) antheridia. Oospores were aplerotic, 10.1 to 23.5 (avg. 20.4, n=20) μm in diameter. Sporangia had terminal inflated hyphal branches (Figure S1 D, E). The two isolates were preliminary identified as Pythium aphanidermatum. For molecular identification, the sequences of internal transcribed spacer (ITS) rDNA, cytochrome oxidase subunit I (CoxI) (Robideau et al. 2011), and β-tubulin (Kroon et al. 2004) of JS19-1 were detected, and deposited in GenBank (MT949538, MT949539 and MT949540). The ITS and CoxI sequences were identical with P. aphanidermatum CBS28779 ITS (759/759 bp, HQ643439.1) and PYT01 CoxI (640/640 bp, MH760243.1) respectively, the β-tubulin sequence showed 99% (830/840 bp) similarity of P. aphanidermatum P2 (AY564048.1). Thus, JS19-1 was confirmed as P. aphanidermatum. To fulfill Koch’s postulates, the pathogenicity of JS19-1 was tested using the procedure of Kiyoshi et al. (2021) with some modifications. Barley grains infested with JS19-1 were as inoculum and thoroughly mixed with potting mixture at a rate of 10% in volume. Six mung bean seeds were sown per pot and then grown in a greenhouse. Potting mixture with no inoculum was used as control. Three pots of replicate plants used for inoculation and control. After 3 weeks, emergence in the inoculated pots was 33% and symptoms of stunting and root rot similar to those in field were observed, while control plants were asymptomatic (FigureS1 F, G). P. aphanidermatum was successfully reisolated from symptomatic plants of both methods. The pathogenicity tests were repeated twice. P. aphanidermatum causes seed rot, pre- and postemergence damping-off, or stem/root rot of a wide range of industrial crops and vegetables (Liu et al, 2018). To our knowledge, this is the first report of P. aphanidermatum causing disease on mung bean in China. Since Phytophthora vignae (Sun et al, 2020) and P. myriotylum (Yan et al, 2021) have been reported causing mung bean root rot, integrated disease management should be adopted to reduce damage.

Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1187-1187
Author(s):  
J. J. Sadowsky ◽  
T. D. Miles ◽  
A. M. C. Schilder

Necrotic stems and leaves were observed on 2- to 4-month-old, rooted microshoot plants (Vaccinium corymbosum L. ‘Liberty’ and ‘Bluecrop’, V. angustifolium Aiton ‘Putte’, and V. corymbosum × V. angustifolium ‘Polaris’) in a Michigan greenhouse in 2008 and 2009. As the disease progressed, leaves fell off and 80 to 100% of the plants died in some cases. Root rot symptoms were also observed. A fungus was isolated from stem lesions. On potato dextrose agar (PDA), cultures first appeared light tan to orange, then rusty brown and zonate with irregular margins. Chains of orange-brown chlamydospores were abundant in the medium. Macroconidiophores were penicillately branched and had a stipe extension of 220 to 275 × 2.5 μm with a narrowly clavate vesicle, 3 to 4 μm wide at the tip. Conidia were hyaline and cylindrical with rounded ends, (1-)3-septate, 48 to 73 × 5 to 7 (average 60 × 5.5) μm and were held together in parallel clusters. Perithecia were globose to subglobose, yellow, 290 to 320 μm high, and 255 to 295 μm in diameter. Ascospores were hyaline, 2- to 3-septate, guttulate, fusoid with rounded ends, slightly curved, and 30 to 88 × 5 to 7.5 (average 57 × 5.3) μm. On the basis of morphology, the fungus was identified as Calonectria colhounii Peerally (anamorph Cylindrocladium colhounii Peerally) (1,2). The internal transcribed spacer region (ITS1 and ITS2) of the ribosomal DNA and the β-tubulin gene were sequenced (GenBank Accession Nos. HQ909028 and JF826867, respectively) and compared with existing sequences using BLASTn. The ITS sequence shared 99% maximum identity with that of Ca. colhounii CBS 293.79 (GQ280565) from Java, Indonesia, and the β-tubulin sequence shared 97% maximum identity with that of Ca. colhounii CBS 114036 (DQ190560) isolated from leaf spots on Rhododendron sp. in North Carolina. The isolate was submitted to the Centraalbureau voor Schimmelcultures in the Netherlands (CBS 129628). To confirm pathogenicity, 5 ml of a conidial suspension (1 × 105/ml) were applied as a foliar spray or soil drench to four healthy ‘Bluecrop’ plants each in 10-cm plastic pots. Two water-sprayed and two water-drenched plants served as controls. Plants were misted intermittently for 2 days after inoculation. After 7 days at 25 ± 3°C, drench-inoculated plants developed necrotic, sporulating stem lesions at the soil line, while spray-inoculated plants showed reddish brown leaf and stem lesions. At 28 days, three drench-inoculated and one spray-inoculated plant had died, while others showed stem necrosis and wilting. No symptoms were observed on control plants. Fungal colonies reisolated from surface-disinfested symptomatic stem, leaf, and root segments appeared identical to the original isolate. Cy. colhounii was reported to cause a leaf spot on blueberry plants in nurseries in China (3), while Ca. crotalariae (Loos) D.K. Bell & Sobers (= Ca. ilicicola Boedijn & Reitsma) causes stem and root rot of blueberries in North Carolina (4). To our knowledge, this is the first report of Ca. colhounii causing a disease of blueberry in Michigan or the United States. Because of its destructive potential, this pathogen may pose a significant threat in blueberry nurseries. References: (1) P. W. Crous. Taxonomy and Pathology of Cylindrocladium (Calonectria) and Allied Genera. The American Phytopathological Society, St. Paul, MN, 2002. (2) L. Lombard et al. Stud. Mycol. 66:31, 2010. (3) Y. S. Luan et al. Plant Dis. 90:1553, 2006. (4) R. D. Milholland. Phytopathology 64:831, 1974.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 854-854 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
G. Ortu ◽  
M. L. Gullino

During July 2012, symptoms of root rot were observed on bell pepper (Capsicum annuum) grown in 2,000 m2 of commercial greenhouses near Cuneo in northern Italy. Symptoms first developed 30 to 40 days after transplanting, when greenhouse temperatures ranged from 25 to 30°C, and 10% of the plants were affected. Affected plants were stunted with leaf chlorosis, reduced growth, and sudden wilting. Roots were severely affected with a brown discoloration, water-soaking, and soft rot. Eventually, affected plants collapsed. Tissue fragments of 1 mm2 were excised from symptomatic roots, dipped in a 1% sodium hypochlorite solution, and placed on potato dextrose agar (PDA) and an agar medium selective for oomycetes (3). Plates were incubated under constant fluorescent light at 22 ± 1°C for 5 days. An isolate grown for 12 days on V8 agar medium (200 ml V8 Campbell Soup, 15 g agar, 0.5 g CaCO3, and 1 liter distilled water) showed aseptate hyphae that were 3.5 to 6.3 μm (avg. 5.2 μm) wide. Oogonia were globose, smooth, and 24.3 to 29.0 (avg. 25.1) μm in diameter. Antheridia were barrel-shaped, while oospores were globose, and 17.3 to 23.5 μm (avg. 21.2 μm) in diameter. These morphological characters identified the microorganism as a Pythium sp. (4). The ITS region of rDNA of a single isolate was amplified using the primers ITS1/ITS4 and sequenced. BLAST analysis (1) of the 781-bp segment (GenBank Accession KF840479) showed 100% homology with the ITS sequence of an isolate of Pythium aphanidermatum in GenBank (AY598622.2). Pathogenicity tests were performed twice on 30-day-old plants of C. annuum cv. Cuneo grown in 2-L pots (4 plants/pot), containing a steam-disinfested, organic peat substrate (70% black peat and 30% white peat, pH 5.5 to 6.0, N 110 to 190 mg/liter, P2O5 140 to 230 mg/liter, K2O 170 to 280 mg/liter) that was infested with wheat and hemp kernels colonized by the isolate of P. aphanidermatum, at a rate of 1 g colonized kernels/liter potting medium. The inoculum was prepared by autoclaving at 121°C for 30 min a mixture of wheat-hemp kernels (2:1 v/v) in a 1-liter flask, to which the bell pepper isolate of P. aphanidermatum was added in the form of colonized agar medium selective for oomycetes plugs. Before use, the inoculated flask was incubated for 10 days at 22°C in the dark. Four plants/pot were transplanted into each of four pots filled with the infested medium/growth chamber, while the same number of plants were grown in non-infested substrate in pots in each growth chamber. Plants were kept in two growth chambers, one set at 20°C and the other at 28°C. Symptoms first developed 7 days after inoculation. After 30 days, 50% of inoculated plants showed brown roots and died in the growth chamber set at 28°C, while only 10% of the plants were symptomatic at 20°C. Control plants remained asymptomatic at both temperatures. P. aphanidermatum was re-isolated consistently from the symptomatic roots of plants grown in the infested soil by using the same protocol as the original isolations, while no fungal colonies were obtained from asymptomatic roots of the non-inoculated control plants. To our knowledge, this is the first report of the presence of P. aphanidermatum on C. annuum in Italy. The same disease was reported in the United States (2). The importance of the disease, although limited in distribution at present to the greenhouses surveyed in northern Italy, could increase in areas where sweet pepper is grown intensively. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. O. Chellemi et al. Plant Dis. 84:1271, 2000. (3) H. Masago et al. Phytopathology 67:425, 1977. (4) T. Watanabe. Pictorial Atlas of Soil and Seed Fungi. CRC Press, Boca Raton, FL, 2002.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1110-1110 ◽  
Author(s):  
G. Polizzi ◽  
A. Vitale ◽  
I. Castello ◽  
J. Z. Groenewald ◽  
P. W. Crous

The mastic tree (Pistacia lentiscus L., Anacardiaceae) is an important sclerophyllous evergreen shrub in the Mediterranean area where it is the dominant component of maquis and garrigues, which is vegetation composed of shrubs, or scrub, usually not exceeding 3 m high. In October 2005, new widespread diseases were noticed in a nursery in eastern Sicily (Italy) affecting container-grown, 1-year-old mastic tree seedlings. Symptoms were detected on approximately 40% of the 5,000 plants and consisted of minute, brown spots, stem lesions, blight, and defoliation. Occasionally, symptoms of crown and root rot were observed. A Cylindrocladium sp. was consistently isolated from rotted crown and roots, leaf spots, and stem lesions on potato dextrose agar. Morphological features of the fungus including conidiophores, conidia, and terminal vesicles were studied under a light microscope. Five Cylindrocladium isolates were cultured on carnation leaf agar (CLA) and identified as C. scoparium Morgan (teleomorph Calonectria morganii Crous, Alfenas & M.J. Wingf.) on the basis of their pyriform to broadly ellipsoidal terminal vesicles, conidiophore branching pattern, conidium and perithecial morphology, as well as their ability to mate with tester strains of selected C. scoparium isolates (2,3). Sequences of partial β-tubulin (GenBank Accessions Nos. DQ521599 and DQ521600) and histone H3 genes (GenBank Accessions Nos. DQ521601 and DQ521602) were generated as described previously (1) for two of the isolates (CBS 119669 and CBS 119670, respectively). A BLAST analysis of the β-tubulin sequences revealed 100% similarity with C. morganii (GenBank Accessions Nos. AF210872, AF210874, and AF210875). No histone H3 sequences are currently available in the GenBank database for C. morganii, and the two sequences generated in this study, therefore, represent the first publicly available histone H3 sequences for this species. Koch's postulates were fulfilled by inoculating 20 1-year-old mastic tree seedlings with a spore suspension of the fungus (105 conidia per ml) obtained from 14-day-old single-spore colonies grown on CLA at 24°C under fluorescent cool white lights on a 12-h light/dark regimen. Following inoculation, all plants were maintained in plastic bags in a growth chamber in which the temperature was 25 ± 1°C and relative humidity was 90 to 95%. The same number of seedlings was used as a control. After 5 to 7 days, foliar symptoms resembling those seen in the nursery were detected on inoculated plants. Crown and root rot symptoms appeared on two plants after 1 month. C. scoparium was reisolated from the artificially infected tissues. No symptoms were detected on the control plants. To our knowledge, this is the first record of this disease in mastic tree and the first record of C. scoparium in Italy. This report also represents the first definitive confirmation of C. scoparium in Europe. References: (1) P. W. Crous et al. Stud. Mycol. 50:415–430, 2004. (2) P. W. Crous and M. J. Wingfield. Mycotaxon 51:341, 1994. (3) C. L. Schoch et al. Mycologia 91:286, 1999.


2003 ◽  
Vol 93 (12) ◽  
pp. 1533-1542 ◽  
Author(s):  
K. A. Seifert ◽  
C. R. McMullen ◽  
D. Yee ◽  
R. D. Reeleder ◽  
K. F. Dobinson

The soilborne fungus Cylindrocarpon destructans (teleomorph: Neonectria radicicola) causes root rot in a wide range of plant hosts; the disease is of particular concern in ginseng production, and in conifer and fruit tree nurseries. β-Tubulin gene and rRNA gene internal transcribed spacer (ITS) sequence data and pathogenicity assays were used to characterize isolates of C. destructans from ginseng and other hosts. The results of these studies demonstrated a high amount of sequence divergence among strains identified as C. destructans or N. radicicola, suggesting the existence of several phylogenetic species in this complex. Accordingly, we propose that the two varieties of N. radicicola be raised to species status. Certain highly aggressive ginseng isolates from Ontario, Korea, and Japan have identical ITS and β-tubulin sequences, and form a monophyletic clade (designated “clade a”); these strains are identified as C. destructans f. sp. panacis. Other ginseng strains clustered in monophyletic groups with strains from angiosperm and conifers. A subtractive hybridization method was used to isolate genomic DNA sequences with diagnostic potential from the aggressive C. destructans Ontario ginseng isolate 1640. One of these sequences was similar to the rRNA gene intergenic spacer from a Fusarium oxysporum isolate from Pinus ponderosa, and hybridized to DNA from F. oxysporum and all C. destructans isolates tested. Primers were designed that could be used to amplify this sequence specifically from the highly aggressive, ginsengadapted C. destructans isolates from Ontario and Korea and other members of clade a.


Author(s):  
G. M. Waterhouse

Abstract A description is provided for Pythium intermedium. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On a wide range of hosts represented by the following families: Begoniaceae, Bromeliaceae, Chenopodiaceae, Compositae, Coniferae, Cruciferae, Euphorbiaceae, Geraniaceae, Gramineae, Leguminosae, Liliaceae, Linaceae, Moraceae, Onagraceae, Ranunculaceae, Rosaceae, Solanaceae, Ulmaceae, Violaceae; also in the Equisetales and Filicales. DISEASES: Damping-off of seedlings, foot rot and root rot of ornamentals, occasionally of crop plants and trees. GEOGRAPHICAL DISTRIBUTION: Asia (China); Australia & Oceania (Hawaii); Europe (England, Belgium, France, Germany, Holland, Sweden, U.S.S.R.); North America (U.S.A.); South America (Argentina). TRANSMISSION: A common soil inhabitant.


Author(s):  
G. M. Waterhouse

Abstract A description is provided for Pythium aphanidermatum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On a wide range of hosts, often similar to those attacked by P. butleri, but inducing different symptoms, represented in the following families: Amaranthaceae, Amaryllidaceae, Araceae, Basellaceae, Bromeliaceae, Cactaceae, Chenopodiaceae, Compositae, Coniferae, Convolvulaceae, Cruciferae, Cucurbitaceae, Euphorbiaceae, Gramineae, Leguminosae, Linaceae, Malvaceae, Moraceae, Passifloraceae, Rosaceae, Solanaceae, Umbelliferae, Violaceae, Vitaceae, Zingiberaceae. DISEASES: Damping-off of various seedlings; 'cottony-leak' of cucurbit fruit in storage; 'cottony blight' of turf grasses; root and stalk rot of maize. Other hosts: tobacco, sugar-beet, sugar-cane, papaw, pineapple, ginger, bean and cotton. GEOGRAPHICAL DISTRIBUTION: Africa (Central African Republic, Fernando, Ghana, Kenya, Malawi, Mali, Nigeria, Sierra Leone, South Africa, Southern Rhodesia, Sudan, Togo, Zambia); Asia (Ceylon, China, Formosa, India, Indonesia, Israel, Japan, Java, Malaya, Philippines, Sumatra); Australasia & Oceania (Australia, Hawaii, New Caledonia); North America (Canada, Mexico); Central America & West Indies (Antilles, Jamaica, Puerto Rico); South America (Argentina, Brazil, Peru, Venezuela); Europe Austria, Cyprus, Czechoslovakia, Great Britain, Greece, Holland, Italy, Poland, U.S.S.R., Yugoslavia). (CMI Map 309) TRANSMISSION: Soil-borne. Eggplant fruit become infected when blossom end is in contact with soil (5: 465). Readily isolated from soil using fresh potato cubes treated with streptomycin and pimaricin as baits (43, 1519; 43, 46) or seedling papaw roots in soil containing papaw tissue (43, 1720). Also recorded as seed-borne on tomato and cucurbits but doubtful whether seed-transmitted (see Noble et al., An Annotated List of Seed-Borne Diseases, 1958, pp. 23, 25, 124).


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1038 ◽  
Author(s):  
J. Beckerman ◽  
H. Nisonson ◽  
N. Albright ◽  
T. Creswell

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Saqib Gulzar ◽  
Krisana Nilsuwan ◽  
Navaneethan Raju ◽  
Soottawat Benjakul

Shrimp oil (SO) rich in n-3 fatty acids and astaxanthin, mixed with antioxidant-rich tea seed oil (TSO), was microencapsulated using mung bean protein isolate and sodium alginate and fortified into whole wheat crackers. SO and TSO mixed in equal proportions were emulsified in a solution containing mung bean protein isolate (MBPI) and sodium alginate (SA) at varied ratios. The emulsions were spray-dried to entrap SO-TSO in MBPI-SA microcapsules. MBPI-SA microcapsules loaded with SO-TSO showed low to moderately high encapsulation efficiencies (EE) of 32.26–72.09% and had a fair flowability index. Two selected microcapsules with high EE possessed the particle sizes of 1.592 and 1.796 µm with moderate PDI of 0.372 and 0.403, respectively. Zeta potential values were −54.81 mV and −53.41 mV. Scanning electron microscopic (SEM) images indicated that microcapsules were spherical in shape with some shrinkage on the surface and aggregation took place to some extent. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analyses of samples empirically validated the presence of SO-TSO in the microcapsules. Encapsulated SO-TSO showed superior oxidative stability and retention of polyunsaturated fatty acids (PUFAs) to unencapsulated counterparts during storage of 6 weeks. When SO-TSO microcapsules were fortified in whole wheat crackers at varying levels (0–10%), the crackers showed sensorial acceptability with no perceivable fishy odor. Thus, microencapsulation of SO-TSO using MBPI-SA as wall materials could be used as an alternative carrier system, in which microcapsules loaded with PUFAs could be fortified in a wide range of foods.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 843-843 ◽  
Author(s):  
N.-H. Lu ◽  
Q.-Z. Huang ◽  
H. He ◽  
K.-W. Li ◽  
Y.-B. Zhang

Avicennia marina is a pioneer species of mangroves, a woody plant community that periodically emerges in the intertidal zone of estuarine regions in tropical and subtropical regions. In February 2013, a new disease that caused the stems of A. marina to blacken and die was found in Techeng Island of Zhanjiang, Guangdong Province, China. Initial symptoms of the disease were water-soaked brown spots on the biennial stems that coalesced so whole stems browned, twigs and branches withered, leaves defoliated, and finally trees died. This disease has the potential to threaten the ecology of the local A. marina community. From February to May 2013, 11 symptomatic trees were collected in three locations on the island and the pathogen was isolated as followed: tissues were surface disinfected with 75% ethanol solution (v/v) for 20 s, soaked in 0.1% mercuric chloride solution for 45 s, rinsed with sterilized water three times, dried, placed on potato dextrose agar (PDA), and incubated for 3 to 5 days at 28°C without light. Five isolates (KW1 to KW5) with different morphological characteristics were obtained, and pathogenic tests were done according Koch's postulates. Fresh wounds were made with a sterile needle on healthy biennial stems of A. marina, and mycelial plugs of each isolate were applied and covered with a piece of wet cotton to maintain moisture. All treated plants were incubated at room temperature. Similar symptoms of black stem were observed only on the stems inoculated the isolate KW5 after 35 days, while the control and all stems inoculated with the other isolates remained symptomless. An isolate similar to KW5 was re-isolated from the affected materials. The pathogenic test was repeated three times with the same conditions and it was confirmed that KW5 was the pathogen causing the black stem of A. marina. Hyphal tips of KW5 were transferred to PDA medium in petri dishes for morphological observation. After 48 to 72 h, white, orange, or brown flocculence patches of KW5 mycelium, 5.0 to 6.0 cm in diameter, grew. Tapering and spindle falciform macroconidia (11 to 17.3 μm long × 1.5 to 2.5 μm wide) with an obviously swelled central cell and narrow strips of apical cells and distinctive foot cells were visible under the optical microscope. The conidiogenous cells were intertwined with mycelia and the chlamydospores were globose and formed in clusters. These morphological characteristics of the isolate KW5 are characteristic of Fusarium equiseti (1). For molecular identification, the ITS of ribosomal DNA, β-tubulin, and EF-1α genes were amplified using the ITS4/ITS5 (5), T1/T2 (2), and EF1/EF2 (3) primer pairs. These sequences were deposited in GenBank (KF515650 for the ITS region; KF747330 for β-tubulin region, and KF747331 for EF-1α region) and showed 98 to 99% identity to F. equiseti strains (HQ332532 for ITS region, JX241676 for β-tubulin gene, and GQ505666 for EF-1α region). According to both morphological and sequences analysis, the pathogen of the black stem of A. marina was identified as F. equiseti. Similar symptoms on absorbing rootlets and trunks of A. marina had been reported in central coastal Queensland, but the pathogen was identified as Phytophthora sp. (4). Therefore, the disease reported in this paper differs from that reported in central coastal Queensland. To our knowledge, this is the first report of black stems of A. marina caused by F. equiseti in China. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, 1st ed. Wiley-Blackwell, Hoboken, NJ, 2006. (2) K. O'Donnell and E. Cigelnik. Mol. Phylogenet. Evol. 7:103, 1997. (3) K. O'Donnell et al. Proc. Natl. Acad. Sci. USA. 95:2044, 1998. (4) K. G. Pegg. Aust et al. Plant Pathol. 3:6, 1980. (5) A. W. Zhang et al. Plant Dis. 81:1143, 1997.


Sign in / Sign up

Export Citation Format

Share Document