scholarly journals First Report of Anthracnose on Hymenocallis littoralis Caused by Colletotrichum siamense in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Yong Huang ◽  
Yue Qin zhang ◽  
Han Hu ◽  
Nai Feng

Spider lily (Hymenocallis littoralis (Jacq.) Salisb.) is a widely cultivated horticultural plant worldwide and has ornamental and medicinal value. Spider lily plants were seriously affected by a leaf spot disease in the campus of Guangdong Ocean University and gardens in Zhanjiang city in February 2018 with an incidence of 30 to 100%. Affected leaves usually developed small circular purple spots, which enlarged to oval spots and large irregular spots. The spots were brown at the center, deep purple at the border and surrounded by a yellow halo. Diseased cultivars were collected in Zhanjiang city, Gangzhou city in Guangdong province and and Zhangping city in Fujian province. Symptomatic leaf samples were disinfested with 1% NaOCl, and cultured on sucrose agar (PSA) at 28 °C for one week. Ten single-spore isolates were recovered from PSA medium. Colonies developing on PSA were grayish white with a regular border. Conidia were straight, hyaline with rounded ends, 4.3 to 6.1×12.8 to 32.1μm (n = 50 conidia of each isolate). Fungal mycelia were hyaline, septate, and branched. Conidia were born on a long conidiogenous cell, appressoria were oval, 6.7 to 10.7 × 5.2 to 6.2 μm (n=50). The isolates were morphologically identified as Colletotrichum sp. (Weir et al. 2012). Tests of pathogenicity were performed according to Koch's postulates using three isolates. Fresh wounds were made with a sterile needle on the healthy surface of leaves of H. littoralis at the 4- to 6-leaf stage and each leaf was covered with a piece of cotton drenched with 200 μL of conidial suspension (106 conidia/ml) from each isolate. Control seedlings were inoculated identically except sterile water was used to drench the cotton. Inoculated plants were placed in a moisturizing light incubator at 25℃ and 80% humidity under a 12-h light/dark cycle for 20 days and examined daily to monitor disease symptom development. Small round brown spots were observed at the inoculation sites 3 days after the inoculation. The brown spots developed into large brown lesions 5 days after inoculation. There were no symptoms observed in the water-inoculated plants. A Colletotrichum spp. strain based on morphology was consistently reisolated from leaves lesions fulfilling Koch’s postulates. For molecular identification, the internal transcribed spacer (ITS) region of ribosomal DNA, calmodulin (CAL), Tublin (Tub) and Apmat loci of three isolates were amplified using primer pairs of ITS4/ITS5, CL1C/CL2C, T1/T2 and AM-F/AM-R (Sharma et al. 2015). A phylogenetic tree derived from a neighbor-joining analysis of a concatenated alignment of ITS, CAL, Tub and ApMAT sequences was created. The accession numbers of three isolates GZHLCG, ZJHLCG and FJHLCG used in this study were MW553083, MN540457, MN540458 for ITS, MW553087- MW553089 for CL, MW553090-MW553092 for Tub and MW553084-MW553086 for ApMAT. The sequences of the three isolates were aligned with related species of Colletotrichum (Sharma et al. 2015). Analyses based on concatenated data sets of four genes showed that the sequences had high levels of identity to those of the C. siamense strains. According to both morphological and sequence analyses, the H. littoralis pathogen was identified as C. siamense. There is a report of foliar diseases on H. littoralis caused by Colletotrichum sp. (Tan et al., 2009). To our knowledge, this is the first report of anthracnose on H. littoralis caused by C. siamense in China. Identification of the pathogen provide valuable information for diagnosis and controlling this disease in H. littoralis.

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 425-425 ◽  
Author(s):  
D. Su ◽  
J. F. Fu

Windflowers (Pulsatilla spp.) are perennial medicinal plants in the family Ranunculaceae with high economic as well as medicinal value in China. It is commonly used as traditional Chinese medicine (1). In May 2012, a root rot disease was observed on windflower (Pulsatilla koreana Nakai) at flowering stages in fields of Liaoning Province, China. The diseased area was estimated to be over 500 ha in the province and the yield was reduced by 30% on average with up to 45% yield losses in some fields. As the disease progressed, brown lesion production extended onto lateral and main roots, and aboveground tissues shriveled and decayed; in severe cases, white mycelium was clearly visible on diseased root tissue. Isolations from symptomatic roots were made on potato dextrose agar (PDA) and single-spore cultures were obtained. Colonies were initially white, but became pale violet with age, and purple pigments were produced in the agar. Microconidia were abundant, unicellular, oval to reniform, and ranged from 5.6 to 13.1 (9.3) × 2.8 to 4.2 (3.2) μm. Macroconidia were sparse, three-septate, slightly curved, and ranged from 21.9 to 39.4 (31.2) × 3.4 to 4.5 (3.9) μm. The isolated fungus was morphologically similar to Fusarium oxysporum (2). Two isolates were selected for molecular identification, and the internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS1/ITS4 (3) and sequenced. The obtained sequences (GenBank Accession Nos. JX669525 and JX669526) showed 99% homology with the sequences of F. oxysporum in GenBank (GQ121303). For pathogenicity tests, the isolate was cultured on PDA for 10 days at 25°C. Inoculations were performed on 10 healthy P. koreana plants by spraying a conidial suspension (2.0 × 105 microconidia ml–1) on roots previously wounded with a metal needle. Ten non-treated plants used as controls were sprayed with distilled water. The inoculated plants were incubated at 25°C under conditions of 12/12 h (light and dark). After 2 weeks, root rot symptoms were similar to the original symptoms observed under field conditions. No disease was observed on water-inoculated control plants. The same fungus was reisolated from the roots of infected plants, satisfying Koch's postulates. To our knowledge, this is the first report of F. oxysporum on P. koreana in China. The disease was hitherto scarcely reported in any other countries, and may deserve more attention in the future. References: (1) S. C. Bang et al. J. Nat. Prod. 68:268, 2005. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Professional, Ames, IA, 2006. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 690-690 ◽  
Author(s):  
W. M. Jurick ◽  
L. P. Kou ◽  
V. L. Gaskins ◽  
Y. G. Luo

Alternaria rot, caused by Alternaria alternata (Fr.) Keissl., occurs on apple fruit (Malus × domestica Borkh) worldwide and is not controlled with postharvest fungicides currently registered for apple in the United States (1). Initial infections can occur in the orchard prior to harvest, or during cold storage, and appear as small red dots located around lenticels (1). The symptoms appear on fruits within a 2 month period after placement into cold storage (3). In February 2013, ‘Nittany’ apple fruit with round, dark, dry, spongy lesions were collected from bins at commercial storage facility located in Pennsylvania. Symptomatic apples (n = 2 fruits) were placed on paper trays in an 80 count apple box and immediately transported to the laboratory. Fruit were rinsed with sterile water, and the lesions were superficially disinfected with 70% ethanol. The skin was removed with a sterile scalpel, and tissues underneath the lesion were cultured on potato dextrose agar (PDA) and incubated at 25°C with constant light. Two single-spore isolates were propagated on PDA, and permanent cultures were maintained on PDA slants and stored at 4°C in darkness. Colonies varied from light gray to olive green in color, produced abundant aerial hyphae, and had fluffy mycelial growth on PDA after 14 days. Both isolates were tentatively identified as Alternaria based on multicelled conidial morphology resembling “fragmentation grenades” that were medium brown in color, and obclavate to obpyriform catentulate with longitudinal and transverse septa attached in chains on simple conidiophores (2). Conidia ranged from 15 to 60 μm (mean 25.5 μm) long and 10 to 25 μm (mean 13.6 μm) wide (n = 50) with 1 to 6 transverse and 0 to 1 longitudinal septa per spore. To identify both isolates to the species level, genomic DNA was extracted from mycelial plugs and gene specific primers (ALT-HIS3F/R) were used via conventional PCR to amplify a portion of the histone gene (357 bp) (Jurick II, unpublished). Amplicons were sequenced using the Sanger method, and the forward and reverse sequences of each amplicon were assembled into a consensus representing 2× coverage. A megaBLAST analysis revealed that the isolates were 99% identical to Alternaria alternata sequences in GenBank (Accession No. AF404617), which was previously identified to cause decay on stored apple fruit in South Africa. To prove pathogenicity, Koch's postulates were conducted using organic ‘Gala’ apples. The fruit were surface disinfested with soap and water and sprayed with 70% ethanol to runoff. Wounds, 3 mm deep, were done using a sterile nail and 50 μl of a conidial suspension (1 × 104 conidia/ml) was introduced into each wound per fruit. Fruit were then stored at 25°C in 80 count boxes on paper trays for 21 days. Water only was used as a control. Ten fruit were inoculated with each isolate or water only (control) and the experiment was repeated once. Symptoms of decay observed on inoculated were ‘Gala’ apple fruit were identical to the symptoms initially observed on ‘Nittany’ apples obtained from cold storage after 21 days. No symptoms developed on fruit in the controls. A. alternata was re-isolated 100% from apple inoculated with the fungus, completing Koch's postulates. A. alternata has been documented as a pre- and postharvest pathogen on Malus spp. (3). To our knowledge, this is the first report of postharvest decay caused by A. alternata on apple fruit during cold storage in Pennsylvania. References: (1) A. L. Biggs et al. Plant Dis. 77:976, 1993. (2) E. G. Simmons. Alternaria: An Identification Manual. CBS Fungal Biodiversity Center, Utrecht, the Netherlands, 2007. (3) R. S. Spotts. Pages 56-57 in: Compendium of Apple and Pear Diseases, A. L. Jones and H. S. Aldwinkle, eds. American Phytopathological Society, St. Paul, MN, 1990.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 289-289 ◽  
Author(s):  
Y. Z. Zhu ◽  
W. J. Liao ◽  
D. X. Zou ◽  
Y. J. Wu ◽  
Y. Zhou

In May 2014, a severe leaf spot disease was observed on walnut tree (Juglans regia L.) in Hechi, Guangxi, China. Leaf spots were circular to semicircular in shape, water-soaked, later becoming grayish white in the center with a dark brown margin and bordered by a tan halo. Necrotic lesions were approximately 3 to 4 mm in diameter. Diseased leaves were collected from 10 trees in each of five commercial orchards. The diseased leaves were cut into 5 × 5 mm slices, dipped in 75% ethanol for 30 s, washed three times in sterilized water, sterilized with 0.1% (w/v) HgCl2 for 3 min, and then rinsed five times with sterile distilled water. These slices were placed on potato dextrose agar (PDA), followed by incubating at 28°C for about 3 to 4 days. Fungal isolates were obtained from these diseased tissues, transferred onto PDA plates, and incubated at 28°C. These isolates produced gray aerial mycelium and then became pinkish gray with age. Moreover, the reverse of the colony was pink. The growth rate was 8.21 to 8.41 mm per day (average = 8.29 ± 0.11, n = 3) at 28°C. The colonies produced pale orange conidial masses and were fusiform with acute ends, hyaline, sometimes guttulate, 4.02 to 5.25 × 13.71 to 15.72 μm (average = 4.56 ± 0.31 × 14.87 ± 1.14 μm, n = 25). The morphological characteristics and measurements of this fungal isolate matched the previous descriptions of Colletotrichum fioriniae (Marcelino & Gouli) R.G. Shivas & Y.P. Tan (2). Meanwhile, these characterizations were further confirmed by analysis of the partial sequence of five genes: the internal transcribed spacer (ITS) of the ribosomal DNA, beta-tubulin (β-tub) gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, chitin synthase 3(CHS-1) gene, and actin (ACT) gene, with universal primers ITS4/ITS5, T1/βt2b, GDF1/GDR1, CHS1-79F/CHS1-354R, and ACT-512F/ACT-783R, respectively (1). BLAST of these DNA sequences using the nucleotide database of GenBank showed a high identify (ITS, 99%; β-tub, 99%; GAPDH, 99%; CHS-1, 99%; and ACT, 100%) with the previously deposited sequences of C. fioriniae (ITS, KF278459.1, NR111747.1; β-tub, AB744079.1, AB690809.1; GAPDH, KF944355.1, KF944354.1; CHS-1, JQ948987.1, JQ949005.1; and ACT, JQ949625.1, JQ949626.1). Koch's postulates were fulfilled by inoculating six healthy 1-year-old walnut trees in July 2014 with maximum and minimum temperatures of 33 and 26°C. The 6-mm mycelial plug, which was cut from the margin of a 5-day-old colony of the fungus on PDA, was placed onto each pin-wounded leaf, ensuring good contact between the mycelium and the wound. Non-colonized PDA plugs were placed onto pin-wounds as negative controls. Following inoculation, both inoculated and control plants were covered with plastic bags. Leaf spots, similar to those on naturally infected plants, were observed on the leaves inoculated with C. fioriniae within 5 days. No symptoms were observed on the negative control leaves. Finally, C. fioriniae was re-isolated from symptomatic leaves; in contrast, no fungus was isolated from the control, which confirmed Koch's postulates. To our knowledge, this is the first report of leaf disease on walnut caused by C. fioriniae. References: (1) L. Cai et al. Fungal Divers. 39:183, 2009. (2) R. G. Shivas and Y. P. Tan. Fungal Divers. 39:111, 2009.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dayu Lan ◽  
Fangling Shu ◽  
Yanhui Lu ◽  
Anfa Shou ◽  
Wei Lin ◽  
...  

Tobacco (Nicotiana tabacum L.), one of the chief commercial crops, is wildly cultivated worldwide. In June 2020 and 2021, an unknown bacterial leaf spot on tobacco was found in Hezhou and Hechi City, Guangxi, China. 30% of the tobacco were affected and the rate of diseased leaves reached about 10% in the field under high temperature and rainstorm. The disease mainly damaged the middle and top leaves of tobacco plants at vigorous growing stage. The initial symptoms were water-soaked spots on the frontal half of a leaf, and then expanded into circular to irregular spots with a yellow halo at the edge. The spots mostly appeared dark brown at high air humidity, while yellow brown at low humidity and exhibited a concentric pattern. In severe cases, the lesions coalesced and the whole leaf was densely covered with lesions, resulting in the loss of baking value. A bacterium was consistently isolated from diseased leaf tissues on nutrient agar (NA). Growth on NA was predominantly grayish white circular bacterial colonies with smooth margins, and the bacterium is rod-shaped, gram-negative and fluorescent on King’s B medium. Seven isolates (ND04A-ND04C and ZSXF02-ZSXF05) were selected for molecular identification and pathogenicity tests. Genomic DNA of the bacterium was extracted and the housekeeping gene of cts (encoding citrate synthase) was amplified with the primers cts-Fs/cts-Rs (forward primer cts-Fs: 5’-CCCGTCGAGCTGCCAATWCTGA-3’; reverse primer cts-Rs: 5’-ATCTCGCACGGSGTRTTGAACATC-3’) (Berge et al. 2014; Sarkar et al. 2004). 409-bp cts gene sequences were deposited in the GenBank database for seven isolates (accession no. OK105110-OK105116). Sequence of seven isolates shared 100% identity with several Pseudomonas cichorii strains within the GenBank database (accession no. KY940268 and KY940271), and the phylogenetic tree of cts genes of the seven isolates clustered with the phylogroup 11 of Pseudomonas syringae (accession no. KJ877799 and KJ878111), which was classified as P.cichorii. To satisfy Koch’s postulates, a pathogenicity test was tested by using a needle to dip a suspension of the bacterium (108 CFU/ml) and pricking three holes in the tobacco leaf. The control plants leaves were needled with sterile water. Each tobacco plant was inoculated with three leaves, and the test was repeated three times. All plants were placed in transparent plastic boxes and incubated in a greenhouse at 25 ± 3°C. The water-soaked spots appeared 24h after inoculation and quickly expanded through leaf veins. Three days after inoculation, all the inoculated leaves showed symptoms similar to those observed in the field. Control plants remained healthy. Only P. cichorii was successfully re-isolated from the lesions, confirming Koch’s postulates. Pseudomonas cichorii can infect eggplant, lettuce, tomatoand other crops, and has a wide range of hosts (Timilsina et al. 2017; Ullah et al. 2015). To our knowledge, this is the first report of P. cichorii causing leaf spot on tobacco in China.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1701-1701 ◽  
Author(s):  
J. W. Woodhall ◽  
P. S. Wharton ◽  
J. C. Peters

The fungus Rhizoctonia solani is the causal agent of stem canker and black scurf of potato (Solanum tuberosum). R. solani is a species complex consisting of 13 anastomosis groups (AGs) designated AG1 to 13 (2, 3). Stems of potato (cv. Russet Norkotah) with brown lesions were recovered from one field in Kimberley, Idaho, in August 2011. Using previously described methods (3), R. solani was recovered from the symptomatic stems and one representative isolate (J15) was selected for further characterization. Sequencing of the rDNA ITS region of isolate J15 was undertaken as previously described (3) and the resulting rDNA ITS sequence (HE667745) was 99% identical to sequences of other AG4 HG-II isolates in GenBank (AF354072 and AF354074). Pathogenicity of the isolate was determined by conducting the following experiment. Mini-tubers of cv. Santé were planted individually in 1-liter pots containing John Innes Number 3 compost (John Innes Manufacturers Association, Reading, UK). Pots were either inoculated with J15, an isolate of AG3-PT (Rs08), or were not inoculated. Each treatment was replicated four times. Inoculum consisted of five 10-mm-diameter potato dextrose agar plugs, fully colonized by the appropriate isolate, placed in the compost approximately 40 mm above each seed tuber. Pots were held in a controlled environment room at 21°C with 50% relative humidity and watered as required. After 21 days, plants were assessed for disease. No symptoms of the disease were present in non-inoculated plants. In the Rs08 (AG3-PT) inoculated plants, all stems displayed large brown lesions and 20% of the stems had been killed. No stem death was observed in J15 (AG4 HG-II) inoculated plants. However, brown lesions were observed in three of the four J15 (AG4 HG-II) inoculated plants. These lesions were less severe than in plants inoculated with the Rs08(AG3-PT) inoculated plants and were present in 40% of the main stems. In the J15 (AG4 HG-II) inoculated pots, R. solani AG4 HG-II was reisolated from the five symptomatic stems, thereby satisfying Koch's postulates. To our knowledge, this is the first report of AG4 HG-II causing disease on potatoes in Idaho. AG4 has been isolated from potato previously from North Dakota, although the subgroup was not identified (1). The only previous report where AG4 HG-II was specifically determined to cause disease on potato was in Finland, but the isolate could not be maintained and Koch's postulates were not completed (3). The present study shows that AG4 HG-II can cause stem disease in potatoes, although disease does not develop as severely or as consistently as for AG3-PT. However, as demonstrated with isolates of AG2-1 and AG5, even mild stem infection can reduce tuber yield by as much as 12% (4). AG4 HG-II is a pathogen of sugar beet in Idaho, which was grown previously in this field. This history may have contributed to high levels of soilborne inoculum required to produce disease on potato. References: (1) N. C. Gudmestad et al. Page 247 in: J. Vos et al. eds. Effects of Crop Rotation on Potato Production in the Temperate Zones. Kluwer, Dordrecht, Netherlands, 1989. (2) M. J. Lehtonen et al. Agric. Food Sci. 18:223, 2009. (3) J. W. Woodhall et al. Plant Pathol. 56:286, 2007. (4) J. W. Woodhall et al. Plant Pathol. 57:897, 2008.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1257-1257 ◽  
Author(s):  
A. D. A. Silva ◽  
D. B. Pinho ◽  
B. T. Hora Junior ◽  
O. L. Pereira

Yucca filamentosa L. (Agavaceae), commonly known as Adam's needle, is known in Brazil as “agulha-de-adão.” It is an ornamental garden plant with medicinal properties (4). In 2010, 100% of Y. filamentosa seedlings and plants were observed with a severe leaf spot disease in two ornamental nurseries located in the municipality of Viçosa, Minas Gerais, Brazil. Initially, lesions were dark brown, elliptical, and scattered, and later became grayish at the center with a reddish brown margin, irregular and coalescent. Infected leaf samples were deposited in the herbarium at the Universidade Federal de Viçosa (Accession Nos. VIC32054 and VIC32055). A fungus was isolated from the leaf spots and single-spore pure cultures were obtained on potato dextrose agar (PDA). The sporulating single-spore cultures were deposited at the Coleção de Culturas de Fungos Fitopatogênicos “Prof. Maria Menezes” (CMM 1843 and CMM 1844). On the leaf, the fungus produced pycnidial conidiomata that were scattered or gregarious, usually epiphyllous, immersed, dark brown, unilocular, subglobose, and 95 to 158 × 108 to 175 μm, with a minute, subcircular ostiole. Conidiogenous cells were blastic, hyaline, conoidal, or short cylindrical. Conidia were aseptate, hyaline, smooth walled, coarsely granular, broadly ellipsoidal to subglobose or obovate, usually broadly rounded at both ends, occasionally truncate at the base or indented slightly at the apex, and 7.5 to 13.5 × 6 to 10 μm. Conidia were also surrounded by a slime layer, usually with a hyaline, flexuous, narrowly conoidal or cylindrical, mucilaginous apical appendage that was 10 to 16 μm long. Spermatia were hyaline, dumbbell shaped to cylindrical, both ends bluntly rounded, and 3 to 5 × 1 to 1.5 μm. These characteristics matched well with the description of Phyllosticta yuccae Bissett (1). To confirm this identification, DNA was extracted using a Wizard Genomic DNA Purification Kit and amplified using primers ITS1 and ITS4 (2) for the ITS region (GenBank Accession Nos. JX227945 and JX227946) and EF1-F and EF2-R (3) for the TEF-1α (JX227947 and JX227948). The sequencing was performed by Macrogen, South Korea. The ITS sequence matched sequence No. JN692541, P. yuccae, with 100% identity. To confirm Koch's postulates, four leaves of Y. filamentosa (five plants) were inoculated with 6-mm-diameter plugs from a 7-day-old culture growing on PDA. The leaves were covered with plastic sack and plants were maintained at 25°C. In a similar manner, fungus-free PDA plugs were placed on five control plants. Symptoms were consistently similar to those initially observed in the nurseries and all plants developed leaf spots by 15 days after inoculation. P. yuccae was successfully reisolated from the symptomatic tissue and control plants remained symptomless. P. yuccae has been previously reported in Canada, the Dominican Republic, Guatemala, Iran, and the United States of America. To our knowledge, this is the first report of P. yuccae causing disease in Y. filamentosa in Brazil and it may become a serious problem for the nurseries, due to the severity of the disease and the lack of chemical products to control this pathogen. References: (1) J. Bissett. Can. J. Bot. 64:1720, 1986. (2) M. A. Innis et al. PCR Protocols: A guide to methods and applications. Academic Press, 1990. (3) Jacobs et al. Mycol. Res. 108:411, 2004. (4) H. Lorenzi and H. M. Souza. Plantas Ornamentais no Brasil. Instituto Plantarum, 2001.


Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1825-1825 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
G. Ortu ◽  
M. L. Gullino

During spring 2012, symptoms of an unusual leaf spot disease were observed in several commercial greenhouses near Salerno (southern Italy) on plants of Diplotaxis tenuifolia (cv Selvatica). The first symptoms on leaves of affected plants consisted of small (1 mm) black-brown spots of irregular shape, later coalescing into larger spots, 1 cm in diameter. Spots were surrounded by a yellow halo, and were mostly located on the foliar limb, rib, and petiole. Affected leaves were often distorted, appearing hook-like. The disease was severe under 75 to 90% RH, at air temperature of 20 to 26°C, and caused severe production losses on about 50 ha. Particularly, affected tissues rotted quickly after packaging and during transit and commercialization of processed rocket. Diseased tissue was excised, immersed in a solution containing 1% sodium hypochlorite for 60 s, rinsed in water, then placed on potato dextrose agar (PDA) medium, containing 25 mg/l of streptomycin sulphate. After 5 days, a fungus developed producing a whitish-orange mycelium when incubated under 12 h/day of fluorescent light at 22°C. The isolates obtained were purified on PDA. On this medium, they produced hyaline elliptical and ovoid conidia, sometimes one-septate, measuring 4.5 to 9.2 × 1.7 to 3.5 (average 6.8 × 2.6) μm. Conidia were born on phialides, measuring 6.8 to 20.2 × 1.3 to 3.1 (average 16.5 × 2.1) μm. Such characteristics are typical of Plectosphaerella sp. (2). The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS1/ITS4 (3) and sequenced. BLAST analysis of the 519-bp segment showed a 98% similarity with the sequence of Plectosphaerella cucumerina (GenBank Accession No. AB469880). The nucleotide sequence has been assigned the GenBank Accession JX185769. To confirm pathogenicity, tests were conducted on 45-day-old D. tenuifolia plants. Plants (21/treatment), grown in 15 liter pots (7 plants/pot) were inoculated by spraying a 1 × 106 CFU/ml conidial suspension of one isolate of P. cucumerina, prepared from 10-day-old cultures, grown on PDA. Inoculated plants were maintained in a growth chamber at 23 ± 1°C, at 90% RH for 4 days. Non-inoculated plants served as control. Inoculated plants showed the typical first leaf spots 6 days after the artificial inoculation. Four days later, spots enlarged and leaves became distorted, showing chlorosis. Non-inoculated plants remained healthy. P. cucumerina was reisolated from inoculated plants. The pathogenicity test was conducted twice with identical results. This is, to our knowledge, the first report of P. cucumerina on D. tenuifolia in Italy as well as worldwide. P. cucumerina has been described as associated with root and collar rots of other horticultural crops in southern Italy (1). Due to the importance of the crop in Italy, this disease can cause serious economic losses. References: (1) A. Carlucci et al., Persoonia, 28:34, 2012. (2) M. E. Palm et al. Mycologia, 87:397, 1995. (3) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 419-419 ◽  
Author(s):  
C. K. Phan ◽  
J. G. Wei ◽  
F. Liu ◽  
B. S. Chen ◽  
J. T. Luo ◽  
...  

Eucalyptus is widely planted in the tropics and subtropics, and it has become an important cash crop in Southern China because of its fast-growing nature. In the Guangxi Province of southern China, Eucalyptus is produced on approximately 2 million ha, and two dominant asexual clones, Guanglin No. 9 (E. grandis × E. urophylla) and DH3229 (E. urophylla × E. grandis), are grown. Diseases are an increasing threat to Eucalyptus production in Guangxi since vast areas are monocultured with this plant. In June 2013, a leaf spot disease was observed in eight out of 14 regions in the province on a total of approximately 0.08 million ha of Eucalyptus. Initially, the lesions appeared as water-soaked dots on leaves, which then became circular or irregular shaped with central gray-brown necrotic lesions and dark red-brown margins. The size of leaf spots ranged between 1 and 3 mm in diameter. The main vein or small veins adjacent to the spots were dark. The lesions expanded rapidly during rainy days, producing reproductive structures. In severe cases, the spots coalesced and formed large irregular necrotic areas followed by defoliation. The causal fungus was isolated from diseased leaves. Briefly, the affected leaves were washed with running tap water, sterilized with 75% ethanol (30 s) and 0.1% mercuric dichloride (3 min), and then rinsed three times with sterilized water. Small segments (0.5 to 0.6 cm2) were cut from the leading edge of the lesions and plated on PDA. The plates were incubated at 25°C for 7 to 10 days. When mycelial growth and spores were observed, a single-spore culture was placed on PDA and grown in the dark at 25°C for 10 days. A pathogenicity test was done by spraying a conidial suspension (5 × 105 conidia ml–1) of isolated fungus onto 30 3-month-old leaves of Guanglin No. 9 seedlings. The plants were covered with plain plastic sheets for 7 days to keep the humidity high. Lesions similar to those observed in the forests were observed on the inoculated leaves 7 to 10 days after incubation. The same fungus was re-isolated. Leaves of control plants (sprayed with sterilized water) were disease free. Conidiophores of the fungus were straight to slightly curved, erect, unbranched, septate, and pale to light brown. Conidia were formed in chains or singly with 4 to 15 pseudosepta, which were oblong oval to cylindrical, subhyaline to pale olivaceous brown, straight to curved, 14.5 to 92.3 μm long, and 3.5 to 7.1 μm wide. The fungus was morphologically identified as Corynespora cassiicola (1). DNA of the isolate was extracted, and the internal transcribed spacer (ITS) region (which included ITS 1, 5.8S rDNA gene of rDNA, and ITS 2) was amplified with primers ITS5 and ITS4. 529 base pair (bp) of PCR product was obtained and sequenced. The sequence was compared by BLAST search to the GenBank database and showed 99% similarity to C. cassiicola (Accession No. JX087447). Our sequence was deposited into GenBank (KF669890). The biological characters of the fungus were tested. Its minimum and maximum growth temperatures on PDA were 7 and 37°C with an optimum range of 25 to 30°C. At 25°C in 100% humidity, 90% of conidia germinated after 20 h. The optimum pH for germination was 5 to 8, and the lethal temperature of conidia was 55°C. C. cassiicola has been reported causing leaf blight on Eucalyptus in India and Brazil (2,3) and causing leaf spot on Akebia trifoliate in Guangxi (4). This is the first report of this disease on Eucalyptus in China. References: (1) M. B. Ellis and P. Holliday. CMI Descriptions of Pathogenic Fungi and Bacteria, No. 303. Commonwealth Mycological Institute, Kew, Surrey, UK, 1971. (2) B. P. Reis, et al. New Dis. Rep. 29:7, 2014. (3) K. I. Wilson and L. R. Devi. Ind. Phytopathol. 19:393, 1966. (4) Y. F. Ye et al. Plant Dis. 97:1659, 2013.


Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1208-1208 ◽  
Author(s):  
S. J. Pethybridge ◽  
F. S. Hay ◽  
C. R. Wilson ◽  
L. J. Sherriff ◽  
G. W. Leggett

Hop (Humulus lupulus L.) is grown primarily for the alpha and beta acids produced in the strobile (cone) and used for bittering beer. In late summer (March) 2001, necrotic lesions covering the tips of cones of cvs. Agate, Nugget, and Willamette at hop farms in Tasmania, Australia, were observed. The necrotic lesions encompassed the proximal tips and affected between 5 and 60% of the cone; however, all bracts in the whorl were always affected. Diseased cones were observed in all seven gardens included in the survey. The incidence of plants with cone tip blight in ‘Nugget’ ranged from 5 to 30% in three gardens, in ‘Agate’ ranged from 3 to 10% in three gardens, and in the only ‘Willamette’ garden 30% of cones were affected. Pieces of infected hop cones (N = 55) were surface-treated for 1 min in 2% sodium hypochlorite, placed on 2% water agar, and incubated at 22 ± 2°C. Fusarium crookwellense Burgess, Nelson, & Toussoun was isolated from 95% of the cones (1). F. crookwellense was identified on carnation leaf agar by L. Burgess, University of Sydney, Australia. Koch's postulates were fulfilled by inoculating detached mature hop cones of cvs. Nugget and Willamette (N = 20 for each cultivar) with an atomized conidial suspension (3.5 × 105 spores of a single F. crookwellense isolate per milliliter) until runoff and incubated at 20 ± 2°C in a sealed container on plastic mesh over tissue wetted with sterile distilled water. Symptoms first appeared 5 days after inoculation and were identical to those found in the field. No disease symptoms were observed on cones subjected only to sterile distilled water. The pathogen was reisolated from diseased tissue on inoculated cones, completing Koch's postulates. Similar disease symptoms on hop cones have been described in Oregon and were associated with infection by F. sambucinum and F. avenaceum (C. Ocamb, personal communication). To our knowledge, this is the first report of the infection of hop cones by F. crookwellense. Reference: (1) L. W. Burgess et al. Laboratory Manual for Fusarium Research, 3rd ed. University of Sydney, Australia, 1994.


Plant Disease ◽  
2011 ◽  
Vol 95 (6) ◽  
pp. 771-771 ◽  
Author(s):  
Q. Bai ◽  
Y. Xie ◽  
J. Gao ◽  
B. Lu ◽  
W. Wang ◽  
...  

Fraxinella, Dictamnus dasycarpus Turcz (Rutaceae), is a perennial herbal plant and mainly distributed in Eurasia and North America. It is often used to treat jaundice, cough, rheumatism, and other diseases and is extensively cultivated in the northeast and northwest of China (3). In June 2009, a severe foliar disease was observed on D. dasycarpus in medicinal plantations in Antu, China. The disease occurred on 100% of the plants and at least 25% of the surface was affected. In the early stages of disease development, symptoms were visible on the top and bottom of infected leaves as small brown spots. Subsequently, these spots became elliptical to irregularly shaped, with beige or grayish white centers and dark brown margins. Within the spots, numerous, dark brown or black, subglobose or ostiolate pycnidia measuring 152 to 367 μm in diameter were observed. Fungal isolates were obtained from the infected leaves on potato dextrose agar (PDA) medium, with conidia that were aseptate or one-septate and ellipsoidal or reniform, measuring approximately 4.7 to 12.6 × 2.1 to 4.5 μm. On the basis of these characteristics, the fungus was identified as a Phoma sp. Four well-sporulating isolates, designated as DdPh-1, DdPh-2, DdPh-3, and DdPh-4, were selected for further studies. The morphological and cultural characteristics of these four isolates were studied as described by Boerema et al. and the fungus was identified as Phoma dictamnicola Boerema et al. (1). The internal transcribed spacer (ITS) region of the nuclear rDNA was amplified and sequenced using primers ITS4/ITS5 (2). All four of the ITS sequences were identical (GenBank Accession No. FR681861) and were 99% identical to P. dictamnicola strains CBS507.91 (Accession No. GU237877) and KACC42445 (Accession No. EF600960). Pathogenicity tests were performed by spraying the leaves of healthy D. dasycarpus plants with a conidial suspension (1 × 106 conidia/ml). Five plants were inoculated with each isolate (DdPh-1, DdPh-2, DdPh-3, and DdPh-4) and five plants were mock inoculated with sterile water. The plants were covered with plastic bags and kept in a greenhouse at 20 to 25° for 72 h. After 9 to 13 days, all inoculated plants showed characteristic symptoms as previously described, while the control plants remained healthy. The fungus was reisolated from the leaf spots of inoculated plants. Currently, the economic importance of this disease is limited, but it may become a more significant problem in production of D. dasycarpus with the cultivation area increasing. The fungus was found in the Netherlands and Korea, but to our knowledge, this is the first report of P. dictamnicola on D. dasycarpus in China. References: (1) G. H. Boerema et al. Phoma Identificatión Manual: Differentiation of Specific and Infra-Specific Taxa in Culture. CABI Publishing. Wallingford, U.K., 2004. (2) D. E. L. Cooke et al. Mycol. Res. 101:667, 1997. (3) S. S. Jiang et al. Biosci. Biotechnol. Biochem. 72:660, 2008.


Sign in / Sign up

Export Citation Format

Share Document