scholarly journals First Report of Leaf Spot Caused by Phyllosticta yuccae on Yucca filamentosa in Brazil

Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1257-1257 ◽  
Author(s):  
A. D. A. Silva ◽  
D. B. Pinho ◽  
B. T. Hora Junior ◽  
O. L. Pereira

Yucca filamentosa L. (Agavaceae), commonly known as Adam's needle, is known in Brazil as “agulha-de-adão.” It is an ornamental garden plant with medicinal properties (4). In 2010, 100% of Y. filamentosa seedlings and plants were observed with a severe leaf spot disease in two ornamental nurseries located in the municipality of Viçosa, Minas Gerais, Brazil. Initially, lesions were dark brown, elliptical, and scattered, and later became grayish at the center with a reddish brown margin, irregular and coalescent. Infected leaf samples were deposited in the herbarium at the Universidade Federal de Viçosa (Accession Nos. VIC32054 and VIC32055). A fungus was isolated from the leaf spots and single-spore pure cultures were obtained on potato dextrose agar (PDA). The sporulating single-spore cultures were deposited at the Coleção de Culturas de Fungos Fitopatogênicos “Prof. Maria Menezes” (CMM 1843 and CMM 1844). On the leaf, the fungus produced pycnidial conidiomata that were scattered or gregarious, usually epiphyllous, immersed, dark brown, unilocular, subglobose, and 95 to 158 × 108 to 175 μm, with a minute, subcircular ostiole. Conidiogenous cells were blastic, hyaline, conoidal, or short cylindrical. Conidia were aseptate, hyaline, smooth walled, coarsely granular, broadly ellipsoidal to subglobose or obovate, usually broadly rounded at both ends, occasionally truncate at the base or indented slightly at the apex, and 7.5 to 13.5 × 6 to 10 μm. Conidia were also surrounded by a slime layer, usually with a hyaline, flexuous, narrowly conoidal or cylindrical, mucilaginous apical appendage that was 10 to 16 μm long. Spermatia were hyaline, dumbbell shaped to cylindrical, both ends bluntly rounded, and 3 to 5 × 1 to 1.5 μm. These characteristics matched well with the description of Phyllosticta yuccae Bissett (1). To confirm this identification, DNA was extracted using a Wizard Genomic DNA Purification Kit and amplified using primers ITS1 and ITS4 (2) for the ITS region (GenBank Accession Nos. JX227945 and JX227946) and EF1-F and EF2-R (3) for the TEF-1α (JX227947 and JX227948). The sequencing was performed by Macrogen, South Korea. The ITS sequence matched sequence No. JN692541, P. yuccae, with 100% identity. To confirm Koch's postulates, four leaves of Y. filamentosa (five plants) were inoculated with 6-mm-diameter plugs from a 7-day-old culture growing on PDA. The leaves were covered with plastic sack and plants were maintained at 25°C. In a similar manner, fungus-free PDA plugs were placed on five control plants. Symptoms were consistently similar to those initially observed in the nurseries and all plants developed leaf spots by 15 days after inoculation. P. yuccae was successfully reisolated from the symptomatic tissue and control plants remained symptomless. P. yuccae has been previously reported in Canada, the Dominican Republic, Guatemala, Iran, and the United States of America. To our knowledge, this is the first report of P. yuccae causing disease in Y. filamentosa in Brazil and it may become a serious problem for the nurseries, due to the severity of the disease and the lack of chemical products to control this pathogen. References: (1) J. Bissett. Can. J. Bot. 64:1720, 1986. (2) M. A. Innis et al. PCR Protocols: A guide to methods and applications. Academic Press, 1990. (3) Jacobs et al. Mycol. Res. 108:411, 2004. (4) H. Lorenzi and H. M. Souza. Plantas Ornamentais no Brasil. Instituto Plantarum, 2001.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 993-993
Author(s):  
S. T. Seo ◽  
C. H. Shin ◽  
J. H. Park ◽  
H. D. Shin

Melia azedarach L., called chinaberry, is native to Southeast Asia and Australia. The trees are commonly planted as ornamentals in the southern part of Korea. In October 2010, a leaf spot disease was observed on trees for the first time in Wando, Korea. Further surveys conducted from 2010 to 2012 showed that the disease occurs on trees in Jeju, Seogwipo, and Tongyeong cities as well as Wando county with nearly 100% incidence. Leaf spots were circular to semicircular, later becoming angular, small, pale brown in the center with a dark brown margin, and later becoming milky white. Leaf spots sometimes coalesced to blight the entire leaf and were capable of rapidly defoliating whole trees in late September. Fruiting was amphigenous, but mostly hypogenous. Stromata were substomatal, globular, dark brown, and 25 to 70 μm in diameter. Conidiophores were densely fasciculate, pale olivaceous to pale brown, substraight to mildly curved, not geniculate, 10 to 30 μm long, 2.5 to 4.5 μm wide, and aseptate or uniseptate. Conidia were pale olivaceous, generally darker than conidiophores, cylindric to obclavate, substraight in shorter ones, curved to mildly sinuous in longer ones, obconically truncate at the base, obtuse at the apex, 2- to 14-septate, 16 to 120 × 3 to 5 μm, guttulate, and had inconspicuous hila. Morphological characteristics of the fungus were consistent with the previous descriptions of Pseudocercospora subsessilis (Syd. & P. Syd.) Deighton (2). Voucher specimens (n = 6) were deposited in the Korea University Herbarium (KUS). An isolate from KUS-F25395 was deposited in the Korean Agricultural Culture Collection (KACC45688). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 (3) and sequenced. The resulting sequence of 517 bp was deposited in GenBank (Accession No. JX993904). A BLAST search in GenBank revealed that the sequence shows >99% similarity (1 bp substitution) with a sequence of P. subsessilis ex M. azedarach from Cuba (GU269815). For pathogenicity tests, hyphal suspensions were prepared by grinding 3-week-old colonies grown on potato dextrose agar with distilled water using a mortar and pestle. Five 3-year-old chinaberry trees were inoculated with hyphal suspensions using a fine haired paint brush. Three healthy trees of the same age, serving as controls, were sprayed with sterile water. The plants were covered with plastic bags to maintain 100% relative humidity for 24 h and then transferred to a greenhouse. Typical symptoms of necrotic spots that appeared on the inoculated leaves 10 days after inoculation were identical to the ones observed in the field. P. subsessilis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. The disease has been reported in several Asian countries as well as in Cuba and the United States (1). To our knowledge, this is the first report of leaf spot on chinaberry caused by P. subsessilis in Korea. The observed high incidence and severity suggest that this disease can be a limiting factor in utilizing this tree species as ornamentals in public areas. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved October 22, 2012. (2) Y. L. Guo and W. H. Hsieh. The genus Pseudocercospora in China. International Academic Publishers, Beijing, China, 1995. (3) T. J. White et al. PCR Protocols. Academic Press, San Diego, CA, 1990.



Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1116-1116 ◽  
Author(s):  
V. Parkunan ◽  
S. Li ◽  
E. G. Fonsah ◽  
P. Ji

Research efforts were initiated in 2003 to identify and introduce banana (Musa spp.) cultivars suitable for production in Georgia (1). Selected cultivars have been evaluated since 2009 in Tifton Banana Garden, Tifton, GA, comprising of cold hardy, short cycle, and ornamental types. In spring and summer of 2012, 7 out of 13 cultivars (African Red, Blue Torres Island, Cacambou, Chinese Cavendish, Novaria, Raja Puri, and Veinte Cohol) showed tiny, oval (0.5 to 1.0 mm long and 0.3 to 0.9 mm wide), light to dark brown spots on the adaxial surface of the leaves. Spots were more concentrated along the midrib than the rest of the leaf and occurred on all except the newly emerged leaves. Leaf spots did not expand much in size, but the numbers approximately doubled during the season. Disease incidences on the seven cultivars ranged from 10 to 63% (10% on Blue Torres Island and 63% on Novaria), with an average of 35% when a total of 52 plants were evaluated. Six cultivars including Belle, Ice Cream, Dwarf Namwah, Kandarian, Praying Hands, and Saba did not show any spots. Tissue from infected leaves of the seven cultivars were surface sterilized with 0.5% NaOCl, plated onto potato dextrose agar (PDA) media and incubated at 25°C in the dark for 5 days. The plates were then incubated at room temperature (23 ± 2°C) under a 12-hour photoperiod for 3 days. Grayish black colonies developed from all the samples, which were further identified as Alternaria spp. based on the dark, brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (2). Conidia were 23 to 73 μm long and 15 to 35 μm wide, with a beak length of 5 to 10 μm, and had 3 to 6 transverse and 0 to 5 longitudinal septa. Single spore cultures of four isolates from four different cultivars were obtained and genomic DNA was extracted and the internal transcribed spacer (ITS1-5.8S-ITS2) regions of rDNA (562 bp) were amplified and sequenced with primers ITS1 and ITS4. MegaBLAST analysis of the four sequences showed that they were 100% identical to two Alternaria alternata isolates (GQ916545 and GQ169766). ITS sequence of a representative isolate VCT1FT1 from cv. Veinte Cohol was submitted to GenBank (JX985742). Pathogenicity assay was conducted using 1-month-old banana plants (cv. Veinte Cohol) grown in pots under greenhouse conditions (25 to 27°C). Three plants were spray inoculated with the isolate VCT1FT1 (100 ml suspension per plant containing 105 spores per ml) and incubated under 100% humidity for 2 days and then kept in the greenhouse. Three plants sprayed with water were used as a control. Leaf spots identical to those observed in the field were developed in a week on the inoculated plants but not on the non-inoculated control. The fungus was reisolated from the inoculated plants and the identity was confirmed by morphological characteristics and ITS sequencing. To our knowledge, this is the first report of Alternaria leaf spot caused by A. alternata on banana in the United States. Occurrence of the disease on some banana cultivars in Georgia provides useful information to potential producers, and the cultivars that were observed to be resistant to the disease may be more suitable for production. References: (1) E. G. Fonsah et al. J. Food Distrib. Res. 37:2, 2006. (2) E. G. Simmons. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands, 2007.



Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1117-1117 ◽  
Author(s):  
S. E. Cho ◽  
J. H. Park ◽  
S. H. Hong ◽  
H. D. Shin

Japanese hop (Humulus japonicus Siebold & Zucc. = H. scandens (Lour.) Merr.), native to East Asia, is an annual, climbing or trailing vine. The vines can spread to cover large areas of open ground or low vegetation, eventually blanketing the land and vegetation. Pollen of H. japonicus is allergenic, and this species is considered as one of the important causes of pollinosis in Korea and China. It is a notorious invasive weed in the United States and also in France, Hungary, and Italy (1). In September 2012, zonate leaf spots were observed on Japanese hops growing in wetlands in Yeongdong County of Korea. A voucher specimen was preserved in the Korea University Herbarium (KUS-F26901). Initial symptoms included grayish-green to grayish-brown spots without border lines. As the lesions enlarged, they coalesced, leading to leaf blight. Sporophores on the leaf lesions were dominantly hypophyllous, rarely epiphyllous, solitary, erect, easily detachable, and as long as 700 μm. The upper portion of the sporophores consisted of a pyramidal head was ventricose, 320 to 520 μm long and 110 to 150 μm wide. The fungus was isolated from leaf lesions and maintained on potato dextrose agar (PDA). Sclerotia were produced on PDA after 4 to 5 weeks at 18°C without light, but conidia were not observed in culture. These morphological and cultural characteristics were consistent with those of Hinomyces moricola (I. Hino) Narumi-Saito & Y. Harada (= Cristulariella moricola (I. Hino) Redhead) (3,4). An isolate was preserved in the Korean Agricultural Culture Collection (Accession No. KACC46955). Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 452 bp was deposited in GenBank (Accession No. KC460209). A BLAST search in GenBank revealed that the sequence showed an exact match with those of C. moricola (JQ036181 ex Acer negundo and JQ036182 ex Glycine max). To determine the pathogenicity of the fungus, according to the procedure of Cho et al. (2), sporophores with the pyramidal head were carefully detached from a lesion on the naturally infected leaf using a needle. Each sporophore was transferred individually onto five places of four detached healthy leaves. The leaves were placed in dew chambers and incubated at 16°C. Symptoms were observed after 2 days on all inoculated leaves. A number of sporophores and immature sclerotia which were morphologically identical to the ones observed in the field were formed on the abaxial surface of the leaf 2 weeks after inoculation. The pathogen was reisolated from lesions on the inoculated leaves, confirming Koch's postulates. No symptoms were observed on the control leaves kept in humid chambers for 2 weeks. H. moricola was known to cause zonate leaf spots and defoliation on a wide range of woody and annual plants (3). To the best of our knowledge, this is the first report of Hinomyces infection on Japanese hops in Korea. References: (1) Anonymous. Humulus japonicus (Cannabaceae): Japanese hop. Eur. Medit. Plant Prot. Org. (EPPO). 2012. (2) S. E. Cho et al. Plant Dis. 96:906, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved December 8, 2012. (4) S. A. Redhead. Can. J. Bot. 53:700, 1975.



Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 916-916 ◽  
Author(s):  
X.-B. Liu ◽  
T. Shi ◽  
C.-P. Li ◽  
J.-M. Cai ◽  
G.-X. Huang

Cassava (Manihot esculenta) is an important economic crop in the tropical area of China. During a survey of diseases in July and September of 2009, leaf spots were observed on cassava plants at three separate plantations in Guangxi (Yunfu and Wuming) and Hainan (Baisha) provinces. Circular or irregular-shaped leaf spots were present on more than one-third of the plants. Spots were dark brown or had white papery centers delimited by dark brown rims and surrounded by a yellow halo. Usually, the main vein or small veinlets adjacent to the spots were dark. Some defoliation of plants was evident at the Wuming location. A fungus was isolated from symptomatic leaves from each of the three locations and designated CCCGX01, CCCGX02, and CCCHN01. Single-spore cultures of these isolates were incubated on potato dextrose agar (PDA) for 7 days with a 12-h light/dark cycle at a temperature of 28 ± 1°C. Conidiophores were straight to slightly curved, unbranched, and pale to light brown. Conidia were formed singly or in chains, obclavate to cylindrical, straight or curved, subhyaline-to-pale olivaceous brown, 19.6 to 150.3 μm long and 5.5 to 10.7 μm wide at the base, with 4 to 13 pseudosepta. Morphological characteristics of the specimen and their conidia were similar to the descriptions for Corynespora cassiicola (2). The isolate CCCGX01 was selected as a representative for molecular identification. Genomic DNA was extracted by the cetyltrimethylammoniumbromide protocol (3) from mycelia and used as a template for amplification of the internal transcribed spacer (ITS) region of rDNA with primer pair ITS1/ITS4. The sequence (GenBank Accession No. GU138988) exactly matched several sequences (e.g., GenBank Accession Nos. FJ852715, EF198117, and AY238606) of C. cassiicola (1). Young, healthy, and fully expanded green leaves of cassava cv. SC205 were surface sterilized. Ten leaves were inoculated with 10-μl drops of 104 ml suspension of conidia and five leaves were inoculated with the same volume of sterile water to serve as controls. After inoculation, leaves were placed in a dew and dark chamber for 36 h at 25°C and subsequently transferred to the light for 5 days. All inoculated leaves with isolates showed symptoms similar to those observed in natural conditions, whereas the controls remained symptom free. The morphological characteristics of reisolated conidia that formed on the diseased parts were identical with the nature isolates. To our knowledge, this is the first report of leaf spot caused by C. cassiicola on cassava in China. References: (1) L. J. Dixon et al. Phytopathology 99:1015, 2009. (2) M. B. Ellis et al. Corynespora cassiicola. No. 303 in: CMI Description of Pathogenic Fungi and Bacteria. Commonwealth Mycological Institute, Kew, UK 1971. (3) J. R. Xu et al. Genetics 143:175, 1996.



Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1064-1064 ◽  
Author(s):  
M. Zhang ◽  
H. Y. Wu ◽  
T. Tsukiboshi ◽  
I. Okabe

Hidcote, Hypericum patulum Thunb. ex Murray, is a deciduous shrub that is cultivated as an ornamental in landscape gardens and courtyards in Japan. In early August 2008, severe leaf spotting was observed on plants growing in a courtyard in Nasushiobara, Tochigi, Japan. More than 30% of the leaves on five shrubs exhibited leaf spot symptoms. Small, round, pale brown lesions were initially observed. Later, they expanded to 5 to 12 mm in diameter, round to irregular-shaped with pale brown centers and dark brown margins. Under continuously wet or humid conditions, black acervuli developed on the leaf lesions. Conidia were straight or slightly curved, fusiform to clavate, and five-celled with constrictions at the septa. Conidia ranged from 17 to 21 × 5 to 8 μm with hyaline apical and basal cells. Fifteen percent of apical cells had two and the rest had three appendages (setulae) ranging from 10 to 21 μm long. The basal hyaline cell tapered into a 2 to 4 μm pedicel. The three median cells ranged from light or dark brown to olive green. These morphological characteristics matched those of Pestalotiopsis microspora (Speg.) G.C. Zhao & N. Li (1,2). The identity of the fungus was confirmed by DNA sequencing of the internal transcribed spacer (ITS) region (GenBank Accession No. GU908473) from single-spore isolates, which revealed 100% homology with those of other P. microspora isolates (e.g., GenBank Accession Nos. FJ459950 and DQ456865). Koch's postulates were confirmed using leaves of three detached branches of a field-grown asymptomatic plant of H. patulum. Thirty leaves of each branch were inoculated by placing mycelial plugs obtained from the periphery of 7-day-old single-spore cultures on the leaf surface. Potato dextrose agar plugs without mycelium served as controls. Leaves on branches were covered with plastic bags for 24 h to maintain high relative humidity in a greenhouse (approximately 24 to 28°C). After 5 days, all inoculated leaves showed symptoms identical to those described above, whereas control leaves remained symptom free. Reisolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was P. microspora. To our knowledge, this is the first report of leaf spots on H. patulum caused by P. microspora in Japan. Management options may have to be developed and implemented to protect Hidcote plants in areas where leaf spot cannot be tolerated. References: (1) P. A. Saccardo. Sylloge Fungorum III:789, 1884. (2) G. C. Zhao and N. Li. J. Northeast For. Univ. 23(4):21, 1995.



Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1254-1254 ◽  
Author(s):  
J. Sun ◽  
D.-M. Wang ◽  
X.-Y. Huang ◽  
Z.-H. Liu

Hazel (Corylus heterophylla Fischl) is an important nut tree grown in China, especially in Liaoning Province, and is rich in nutritional and medicinal values. In August 2011, leaf spotting was observed on hybrid hazel (Dawei) leaves in Paotai Town, Wafangdian County of Liaoning Province. By August 2012, the disease had spread to Zhangdang Town, Fushun County. Symptoms initially appeared on both sides of leaves as pinpoint brown spots, which enlarged and developed into regular, dark brown lesions, 3 to 9 mm in diameter. The lesions were lighter in color in the center compared to the margin. To identify the pathogen, leaf pieces (3 to 5 mm) taken from the margins, including both symptomatic and healthy portions of leaf tissue, were surface-disinfected first in 75% ethanol for 5 s, next in 0.1% aqueous mercuric chloride for 50 s, and then rinsed with sterilized water three times. Leaf pieces were incubated on potato dextrose agar (PDA) at 25°C for 14 days in darkness. Single spore isolates were obtained from individual conidia. For studies of microscopic morphology, isolates were grown on synthetic nutrient agar (SNA) in slide cultures. Colonies grew up to 45 to 48 mm in diameter on PDA after 14 days. Pycnidia appeared on the colonies after 12 days. Conidiophores were short. Pycnidia were dark brown, subglobose, and 150 to 205 μm in diameter. Conidia were unicellular, colorless, ovoid to oval, and from 2.4 to 4.5 × 1.6 to 2.4 μm. On the basis of these morphological characteristics, the isolates were tentatively identified as Phyllosticta coryli Westend (2). The rDNA internal transcribed spacer (ITS) region was amplified using primers ITS1 and ITS4 and sequenced (GenBank Accession No. KC196068). The 490-bp amplicons had 100% identity to an undescribed Phyllosticta species isolated from Cornus macrophylla in Gansu, Tianshui, China (AB470897). On the basis of morphological characteristics and nucleotide homology, the isolate was tentatively identified as P. coryli. Koch's postulates were fulfilled in the growth chamber on hazelnut leaves inoculated with P. coryli conidial suspensions (107 conidia ml–1). Eight inoculated 1-year-old seedlings (Dawei) were incubated under moist conditions for 8 to 10 days at 25°C. All leaf spots that developed on inoculated leaves were similar in appearance to those observed on diseased hazel leaves in the field. P. coryli was recovered from lesions and its identity was confirmed by morphological characteristics. P. coryli was first reported as a pathogen of hazel leaves in Bull of Belgium (2). In China, P. coryli was first reported on Corylus heterophylla Fisch. in Jilin Province (1). To our knowledge, this is the first report of P. coryli causing leaf spot on hybrid hazel in Liaoning Province of China. The outbreak and spread of this disease may decrease the yield of hazelnut in northern regions of China. More studies are needed on control strategies, including the possible resistance of hazel cultivars to P. coryli. References: (1) Y. Li et al. J. Shenyang Agric. Univ. 25:153, 1994. (2) P. A. Saccardo. Sylloge Fungorum Vol. III, page 31, 1884.



Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1256-1256 ◽  
Author(s):  
L. F. Zhai ◽  
J. Liu ◽  
M. X. Zhang ◽  
N. Hong ◽  
G. P. Wang ◽  
...  

Aloe vera L. var Chinese (Haw) Berg is a popular ornamental plant cultivated worldwide, whose extracts are used in cosmetics and medicine. Aloe plants are commonly affected by leaf spot disease caused by Alternaria alternata in Pakistan, India, and the United States (1). An outbreak of Alternaria leaf spot recently threatened aloe gel production and the value of ornamental commerce in Louisiana (1). During the summer of 2011, leaf spot symptoms were observed on A. vera plants growing in several greenhouses and ornamental gardens in Wuhan, Hubei Province, China. In two of the greenhouses, disease incidence reached 50 to 60%. The initial symptoms included chlorotic and brown spots that expanded to 2 to 4 mm in diameter and became darker with age. Lesions also developed on the tips of 30 to 50% of the leaves per plant. In severe infections, the lesions coalesced causing the entire leaf to become blighted and die. In September of 2012 and February of 2013, 10 symptomatic A. vera leaves were collected randomly from two greenhouses and gardens in Wuhan. A fungus was consistently recovered from approximately 80% of the tissue samples using conventional sterile protocols, and cultured on potato dextrose agar (PDA). The colonies were initially white, becoming grey to black, wool-like, and growing aerial mycelium covering the entire petri dish (9 cm in diameter) plate within 5 days when maintained in the dark at 25°C. The conidia were brown or black, spherical to subspherical, single celled (9 to 13 μm long × 11 to 15 μm wide), borne on hyaline vesicles at the tip of conidiophores. The conidiophores were short and rarely branched. These colonies were identified as Nigrospora oryzae based on the described morphological characteristics of N. oryzae (2). Genomic DNA was extracted from a representative isolate, LH-1, and the internal transcribed spacer region was amplified using primer pair ITS1/ITS4 (3). A 553-bp amplicon was obtained and sequenced. The resulting nucleotide sequence (GenBank Accession No. KC519728) had a high similarity of 99% to that of strain AHC-1 of N. oryzae (JQ864579). Pathogenicity tests for strain LH-1 were conducted in triplicate by placing agar pieces (5 mm in diameter) containing 5-day-old cultures on A. vera leaves. Four discs were placed on each punctured surface of each leaf. Noncolonized PDA agar pieces were inoculated as controls. Leaves were placed in moist chambers at 25°C with a 12-h photoperiod. After 3 days, the inoculated leaves showed symptoms similar to those observed in the greenhouses. N. oryzae was reisolated from these spots on the inoculated leaves. No visible symptoms developed on the control leaves. The pathogenicity tests were performed twice with the same results. Based on the results, N. oryzae was determined as a pathogen responsible for the leaf spots disease on A. vera. N. oryzae has been described as a leaf pathogen on fig (Ficus religiosa), cotton (Gossypium hirsutum) and Kentucky bluegrass (Poa pratensis) (4), and to our knowledge, this is the first report of N. oryae causing leaf spot disease on A. vera worldwide. References: (1) W. L. da Silva and R. Singh. Plant Dis. 86:1379, 2012. (2) M. B. Ellis. Dematiaceous Hyphomycetes, CAB, Kew, Surrey, England, 1971. (3) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (4) L. X. Zhang et al. Plant Dis. 96:1379, 2012.



Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1383-1383 ◽  
Author(s):  
Q. L. Li ◽  
J. Y. Mo ◽  
S. P. Huang ◽  
T. X. Guo ◽  
Z. B. Pan ◽  
...  

Lobelia chinensis is a perennial herbaceous plant in the family Campanulaceae that is native to China, where it grows well in moist to wet soils. It is commonly used as a Chinese herbal medicine. In May 2012, symptoms of leaf spot were observed on leaves of L. chinensis in Nanning, Guangxi Zhuang Autonomous Region, China. The leaf lesions began as small, water-soaked, pale greenish to grayish spots, which enlarged to gray to pale yellowish spots, 4 to 6 mm in diameter. At later stages, numerous acervuli appeared on the lesions. Acervuli were mostly epiphyllous, and 40 to 196 μm in diameter. On potato dextrose agar (PDA), a fungus was consistently recovered from symptomatic leaf samples, with a 93% isolation rate from 60 leaf pieces that were surface sterilized in 75% ethanol for 30 s and then in 0.1% mercuric chloride for 45 s. Three single-spore isolates were used to evaluate cultural and morphological characteristics of the pathogen. Setae were two to three septate, dark brown at the base, acicular, and up to 90 μm long. Conidia were long oblong-elliptical, guttulate, hyaline, and 11 to 20 × 4.1 to 6.3 μm (mean 15.2 × 5.1 μm). These morphological characteristics of the fungus were consistent with the description of Colletotrichum magna (teleomorph Glomerella magna Jenkins & Winstead) (1). The rDNA internal transcribed spacer (ITS) region of one isolate, LC-1, was sequenced (GenBank Accession No. KC815123), and it showed 100% identity to G. magna, GenBank HM163187.1, an isolate from Brazil cultured from papaya (2). Although KC815123 was identified as G. magna, it shows 99% identity to GenBank sequences from isolates of C. magna, and more research is needed to elucidate the relationships between these taxa, especially with consideration to host specificity. Pathogenicity tests were performed with each of the three isolates by spraying conidial suspensions (1 × 106 conidia/ml) containing 0.1% Tween 20 onto the surfaces of leaves of 30-day-old and 6- to 8-cm-high plants. For each isolate, 30 leaves from five replicate plants were treated. Control plants were treated with sterilized water containing 0.1% Tween 20. All plants were incubated for 36 h at 25°C and 90% relative humidity in an artificial climate chamber, and then moved into a greenhouse. Seven days after inoculation, gray spots typical of field symptoms were observed on all inoculated leaves, but no symptoms were seen on water-treated control plants. Koch's postulates were fulfilled by reisolation of G. magna from diseased leaves. To our knowledge, this is the first report of G. magna infecting L. chinensis worldwide. References: (1) M. Z. Du et al. Mycologia 97:641, 2005. (2) R. J. Nascimento et al. Plant Dis. 94:1506, 2010.



Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1007-1007 ◽  
Author(s):  
B. J. Li ◽  
J. X. Chuan ◽  
M. Yang ◽  
G. F. Du

Gynura (Gynura bicolor DC.) is a perennial herbaceous plant in the family Compositae. It is an important Chinese vegetable, and is commonly used as a Chinese herbal medicine. In 2010, a severe leaf spot disease was observed on gynura grown in the main production areas in Tong Nan County, Chongqing City, China. Some farms experienced 60% disease incidence. Symptoms usually began on the lower leaves, as circular to elliptical or irregular spots with concentric rings. Individual spots were dark brown with grayish centers, sometimes coalescing and leading to extensive necrosis. The fungus associated with lesions was characterized as follows: Conidiophores were single or in clusters, straight or flexuous, unbranched, percurrent, cylindrical, pale to dark brown, 87.5 to 375.0 μm long and 5.0 to 10.5 μm wide. Conidia were solitary or catenate, straight to slightly curved, obclavate to cylindrical, 3 to 14 pseudoseptate, 82.8 to 237.5 μm long and 7.0 to 7.8 μm wide, and pale brown. The morphological characteristics of the conidia and conidiophores agreed with the descriptions for Corynespora cassiicola (1). To isolate the causal pathogen, surface-sterilized tissue at the margin of lesions was immersed in 75% ethanol for 30 s, rinsed in sterile water, dried in a laminar flow bench, transferred to PDA, and incubated at 28°C. Four single-spore cultures of the isolates were obtained and named from ZBTK10110637 to ZBTK10110640. All strains were identified as C. cassiicola. The isolate ZBTK10110637 was selected as representative for molecular identification. Genomic DNA was extracted by CTAB (2). The internal transcribed spacer (ITS) region of the rDNA was amplified using primers with ITS1 (5′-TCCGATGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). Amplicons were 433 bp (GenBank Accession No. JX867272) and shared 100% similarity with that of C. cassiicola (NRC2-1 No. AB539285.1). To confirm pathogenicity, four isolates were used to inoculate 12 gynura plants (6 weeks old) by mist spray-inoculation with 108 spores/ml suspension in sterile distilled water on the leaves. Control plants were misted with sterile distilled water. After inoculation, all plants were incubated in a greenhouse maintained at 20 to 28°C with relative humidity of 80 to 85%. Five days after inoculation, dark brown spots with a grayish center typical of field symptoms were observed on all inoculated plants. No symptoms were seen on water-treated control plants. The fungus was re-isolated from inoculated plants. The morphological characteristics of isolates were identical with the pathogen recovered originally. This is the first report of C. cassiicola on gynura. References: (1) M. B. Ellis. CMI Mycological Papers 65(9):1-15, 1957. (2) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.



Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1702-1702 ◽  
Author(s):  
A. R. Machado ◽  
D. B. Pinho ◽  
M. Silva ◽  
O. L. Pereira

Pfaffia glomerata (Spreng) Pedersen (Amaranthaceae) and other species in this genus, popularly known as “Brazilian ginseng,” have been marketed and used for many years in folk medicine for the treatment of various diseases (1). In January 2012, samples of P. glomerata with leaf spots were collected in the city of Viçosa, state of Minas Gerais, Brazil. Two samples were deposited in the herbarium at the Universidade Federal de Viçosa (VIC31849 and VIC31851). The diseased leaves were examined using a stereomicroscope (75×). The fungal structures were scraped with a scalpel from the plant surface and mounted in lactophenol. Thirty measurements of all of the relevant morphological characters were obtained using light microscopy for the identification of the species. To confirm the identification, fungal DNA from single-spore pure culture was isolated from the diseased leaves on PDA, and the DNA was amplified using primers ITS1 and ITS4 for the ITS region (GenBank Accession No. JQ990331) and LR0R and LR5 for partial 28S rDNA (Accession No. JQ990330). Sequencing was performed by Macrogen, Korea. The symptoms observed were leaf spots, subcircular, usually up to 6 mm diameter, initially yellowish becoming brown to reddish, margin indefinite, with the formation of fungal structures, hypophyllous, white, scattered, or grouped. Conidiophores were very numerous in dense subsynnematal fascicles, moderately brown at the base but for most of the length subhyaline, 42.5 to 350 × 2.5 to 3.5 μm, showing conidial scars. Conidia formed singly, 22.5 to 77.5 × 5 to 6 μm, hyaline, hilum slightly thickened, and refractive. These characteristics show that the fungus found on P. glomerata matched well with the description of Cercosporella pfaffiae (2). Koch's postulates were fulfilled by inoculation of 6-mm-diameter PDA plugs with the isolate mycelia on leaves of P. glomerata. Six plants were inoculated with the isolate and six plants were inoculated with an isolate-free agar plug. Inoculated plants were maintained in a moist chamber for 24 hours and subsequently in a greenhouse at 26°C. Leaf spot was observed in inoculated plants 15 days after inoculation, and symptoms were similar to those in the field. All non-inoculated plants remained healthy. A Megablast search of the NCBI GenBank nucleotide sequence database using the ITS sequence retrieved C. virgaureae as the closest match [GenBank GU214658; Identity = 458/476 (96%), Gaps = 2/476 (0%)]. To confirm the identification, Bayesian inference analyses were employed, and the tree was deposited in TreeBASE (Study S12680). The analysis placed our isolate in the same clade with the type species of Cercosporella. Molecular studies and morphological characteristics confirm our identification. C. pfaffiae has been previously reported in P. iresinoides (H.B.K.) Spreng. in Trinidad and Gomphrena glomerata L. in Argentina (2). To our knowledge, this is the first report of C. pfaffiae causing disease in P. glomerata in Brazil and it may become a serious problem for some medicinal plant growers, due to the severity of the disease and the lack of chemical products for this pathogen. References: (1) Neto et al. J. Ethnopharmacol. 96:87, 2005. (2) U. Braun. A Monograph of Cercosporella, Ramularia and Allied Genera (Phytopathogenic Hyphomycetes). Eching bei Müchen, IHW-Verlage. Vol. 1, p. 68, 1995.



Sign in / Sign up

Export Citation Format

Share Document