scholarly journals A Postharvest Fruit Rot of Apple Caused by Lambertella corni-maris in Washington State

Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 201-206 ◽  
Author(s):  
M. S. Wiseman ◽  
F. M. Dugan ◽  
Y. K. Kim ◽  
C. L. Xiao

During surveys for postharvest diseases of apple conducted in Washington State, an unknown fruit rot was observed on stored apple fruit collected from commercial fruit packinghouses. This disease was present in 66 of the 179 grower lots sampled, accounting for an average 1 to 3% of the total decayed fruit sampled. The disease appeared to originate from infection of wounds on the fruit skin. Lesions were brown and decayed tissues were spongy. A Lambertella sp. was consistently isolated from the decayed fruit. Sequences of the fungus and those of Lambertella corni-maris in GenBank differed by 0 to 4 bp across the combined small ribosomal subunit + internal transcribed spacer + large ribosomal subunit regions with a maximum identity ranging from 99 to 100%. The fungus grew at 0 to 20°C and formed apothecia on artificial media after 8 to 24 weeks. On potato dextrose agar under a 12-h photoperiod, apothecial dimensions were variable, ranging from 1 to 6 mm in diameter with stipes of 1 to 4 by 0.5 mm. Asci were 76 to 125 by 3.5 to 5.5 μm, inoperculate, eight-spored, clavate, and narrowed at the base. Ascospores were aseptate, 7 to 10 by 2.5 to 4.5 μm, uniseriate to biseriate, and orange-brown at maturity in the ascus. Colony characteristics included little or no aerial mycelium, dark-yellow to gray-black mycelium, gray-black pseudosclerotia, and yellow pigmentation in the agar. Morphological characteristics of the fungus overlapped with the description of L. corni-maris. ‘Fuji’ apple fruit that were wounded, inoculated with representative isolates, and incubated at 0°C yielded the same symptoms as seen in packinghouses, and the fungus was reisolated from the diseased fruit. This is the first report of a fruit rot in stored apple caused by L. corni-maris in the United States. We propose Lambertella rot as the name of this disease.

Plant Disease ◽  
2016 ◽  
Vol 100 (1) ◽  
pp. 32-39 ◽  
Author(s):  
M. S. Wiseman ◽  
Y. K. Kim ◽  
F. M. Dugan ◽  
J. D. Rogers ◽  
C. L. Xiao

During surveys for postharvest diseases of apple and pear, an unknown postharvest fruit rot was observed in Washington State. The disease appeared to originate from infection of the stem and calyx tissue of the fruit or wounds on the fruit. An unknown pycnidial fungus was consistently isolated from the decayed fruit. Isolates from apple and pear were characterized and identified by molecular phylogenetic analysis and morphology. Pathogenicity of representative isolates on apple and pear fruit was tested under laboratory or field conditions. A BLAST search in GenBank showed that isolates differed from Phacidium lacerum and its synonym, Ceuthospora pinastri, by only 0 to 4 bp in sequences within part of the combined large ribosomal subunit + internal transcribed spacer + small ribosomal subunit regions. The phylogenetic analysis confirmed the taxonomic placement of the unknown fungus in the genus Phacidium, with the highest match being C. pinastri (formerly anamorphic P. lacerum) and with closely related taxa from GenBank forming congeneric clades. The fungus grew at 0 to 30°C and formed unilocular to multilocular pycnidial conidiomata on artificial media after approximately 5 to 7 days at room temperature. On potato dextrose agar incubated for a 12-h photoperiod, semi-immersed globose to subglobose pycnidial conidiomata were 250 to 1,000 μm in diameter (mean = 350), with 1 to 3 nonpapillate to slightly papillate ostioles and a buff conidial matrix. Conidia produced on phialides were 8 to 13 by 1.5 to 2.5 μm, hyaline, aseptate, cylindrical, with an abruptly tapered, typically slightly protuberant base, 2 to 3 guttules, and sometimes with a mucilaginous, flexuous, unbranched appendage which is attached to the apex of the conidium and disappears with age. Conidiogenous cells were flask shaped and 6 to 15 ×1.5 to 3 μm. Colony characteristics included felt-like aerial white mycelium, gray olivaceous at the center becoming greenish to colorless toward the margin, in concentric rings, with pycnidia forming in 5 to 7 days originating from the center of the plate. Morphological characteristics of the fungus had the greatest conformity with the description for C. pinastri. Based on molecular and morphological data, the fungus is identified as P. lacerum. ‘Fuji’ apple fruit and ‘d’Anjou’ pear fruit that were wounded, inoculated with representative isolates, and incubated at 0°C yielded the same symptoms as seen on decayed fruit collected from commercial fruit packinghouses. Stem-end rot, calyx-end rot, and wound-associated rot developed on fruit inoculated in the orchard after 3 months of cold storage. The fungus was reisolated from the diseased fruit. This is the first report of a fruit rot in apple and pear caused by P. lacerum. We propose Phacidium rot as the name of this disease.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Jianghua Chen ◽  
Zihang Zhu ◽  
Yanping Fu ◽  
Jiasen Cheng ◽  
Jiatao Xie ◽  
...  

Considering the huge economic loss caused by postharvest diseases, the identification and prevention of citrus postharvest diseases is vital to the citrus industry. In 2018, 16 decayed citrus fruit from four citrus varieties—Satsuma mandarin (Citrus unshiu), Ponkan (Citrus reticulata Blanco cv. Ponkan), Nanfeng mandarin (Citrus reticulata cv. nanfengmiju), and Sugar orange (Citrus reticulata Blanco)—showing soft rot and sogginess on their surfaces and covered with white mycelia were collected from storage rooms in seven provinces. The pathogens were isolated and the pathogenicity of the isolates was tested. The fungal strains were identified as Lasiodiplodia pseudotheobromae based on their morphological characteristics and phylogenetic analyses using the internal transcribed spacer regions (ITS), translation elongation factor 1-α gene (TEF), and beta-tubulin (TUB) gene sequences. The strains could infect wounded citrus fruit and cause decay within two days post inoculation, but could not infect unwounded fruit. To our knowledge, this is the first report of citrus fruit decay caused by L. pseudotheobromae in China.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 485-490 ◽  
Author(s):  
Sylvana Soto-Alvear ◽  
Mauricio Lolas ◽  
Inés M. Rosales ◽  
Eduardo R. Chávez ◽  
Bernardo A. Latorre

Apple fruit in Chile are primarily produced for export to Asia, Europe, and the United States, which typically requires 15 to 40 days of maritime transportation. Therefore, Chilean apple production must fulfill the sanitization requirements imposed by the receiving countries. Under these circumstances, it was important to clarify the etiology of bull's eye rot that can severely affect ‘Cripps Pink’ apple and other late-harvest cultivars in Chile. Based on morphological characteristics and the partial sequence analysis of the internal transcribed spacer sequences and β-tubulin genes, Neofabraea alba was identified as the causal agent of the bull's eye rot of Chilean apple. These results were further corroborated using species-specific primers. The incidence of bull's eye rot varied considerably; for instance, in 2009, 0.0 to 58.7% in 38 Cripps Pink orchards surveyed in the relatively arid and humid apple-growing areas of Chile, respectively. There was no evidence for the presence of N. malicorticis or N. perennans, which are commonly identified as causal agents of bull's eye rot in other apple-producing countries. Altogether, these data suggest that N. alba might represent the predominant and possibly the only cause of bull's-eye rot of Chilean apple.


Plant Disease ◽  
2006 ◽  
Vol 90 (11) ◽  
pp. 1376-1381 ◽  
Author(s):  
Y. K. Kim ◽  
C. L. Xiao

During a survey of postharvest diseases in Red Delicious apples (Malus domestica) conducted in 2003, a previously undescribed postharvest fruit rot was discovered in Washington State. The causal agent has been described as a new species, Phacidiopycnis washingtonensis. In this study, we described the symptomatology of this disease, determined its occurrence and prevalence in Washington State, tested pathogenicity, and determined infection courts on fruit of three apple varieties. Decayed fruit were sampled from 26, 72, and 81 grower lots during March to August in 2003, 2004, and 2005, respectively, during packing operations from commercial packinghouses. Symptoms of decayed fruit were recorded and isolations were made from decayed fruit to correlate causal agents with the disease symptoms observed. Fruit of Red Delicious, Golden Delicious, and Fuji apples were inoculated in the orchards with conidial suspensions of the fungus at 1 and 2 weeks before harvest. All fruit were harvested and stored at 0°C, and decay development on the fruit was monitored monthly for up to 9 months. The symptoms were primarily stem-end rot and calyx-end rot. Infection also occurred at lenticels on fruit skin, particularly on Golden Delicious. The decayed area was spongy to firm and appeared light brown to brown. On Red Delicious, brown to black specks at lenticels often appeared at the decayed area as the disease advanced. This disease occurred in 23, 26, and 17% of the total grower lots, accounting for approximately 1, 4, and 3% of the total decay in 2003, 2004, and 2005, respectively. In 2004 and 2005, severe losses of fruit were observed in three grower lots of Red Delicious, and their losses were as high as 24%. After 9 months in storage, 48, 48, and 24% of Red Delicious, Golden Delicious, and Fuji that were inoculated in the orchards, respectively, developed symptoms of this disease, and the fungus was reisolated from decayed fruit. Stem-end rot was common on Red Delicious and Golden Delicious, whereas calyx-end rot was common on Fuji. We propose “speck rot” as the name of this disease.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 413-418 ◽  
Author(s):  
C. L. Xiao ◽  
R. J. Boal

Phacidiopycnis rot, caused by Phacidiopycnis piri, is a newly recognized postharvest disease in pear fruit (Pyrus communis cv. d'Anjou) in the United States. To determine the prevalence and incidence of this disease, decayed fruit were sampled during packing and repacking operations from four packinghouses in 2001 and 2002. During March to May (repacking) in 2001, Phacidiopycnis rot was found in packed fruit that were stored in cardboard boxes from 22 of 26 grower lots (orchards), and accounted for 5 to 71% of the total decay. Phacidiopycnis rot, gray mold caused by Botrytis cinerea, and blue mold caused by Penicillium spp. accounted for an average of 34.1, 10.3, and 33.6% of decayed fruit from conventional orchards, respectively; and 22.8, 35.7, and 23.5% of decayed fruit from organic orchards, respectively. During November 2001 to January 2002 (packing), Phacidiopycnis rot was observed in fruit that were stored in field bins before packing from 30 of 33 grower lots, accounting for 18.4% of decayed fruit sampled. During March to May in 2002, Phacidiopycnis rot was responsible for 2 to 68% of decayed fruit sampled from 36 of 39 grower lots. Phacidiopycnis rot, gray mold, and blue mold accounted for an average of 19.6, 26.8, and 37.4% of decayed fruit from conventional orchards, respectively; and 42.2, 25.7, and 8.2% of decayed fruit from organic orchards, respectively. Most Phacidiopycnis rot that occurred in field bins before packing appeared to originate from wound infections; whereas after packing, approximately 60 and 30% of Phacidiopycnis rot originated from stem and calyx infections, respectively. This study indicates that Phacidiopycnis rot should be considered one of the targets for control of postharvest diseases in d'Anjou pears in the region.


Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 693-693 ◽  
Author(s):  
R. A. Spotts ◽  
G. G. Grove

A decay of ‘Granny Smith’ apples (Malus domestica Borkh.) was observed in 1988, 1990, and 1991 on fruit grown in the lower Hood River Valley of Oregon and stored at 0°C. Harvested fruit were drenched with thiabendazole and stored in October in all years. In mid-November, fruit were sized, drenched with sodium hypochlorite, and returned to cold storage. Decay was observed in January when fruit were removed from cold storage, sorted, and packed. Decayed areas were light brown and firm with a slightly indefinite margin. Losses were less than 1% of fruit packed. Diseased fruit were surface-disinfested with 95% ethanol, and tissue pieces were transferred aseptically to potato dextrose agar acidified with lactic acid and incubated at approximately 22°C. The fungus consistently isolated was identified as Phytophthora syringae (Kleb.) Kleb. based on morphological characters (3). Sporangia were persistent and averaged 60 μm long (range 59 to 69) × 40 μm wide (range 37 to 43). Antheridia were paragynous, and oospores averaged 37 μm (range 31 to 46). ‘Golden Delicious’, ‘Granny Smith’, and ‘Gala’ apples were inoculated with mycelial plugs from a 7-day-old culture of P. syringae and incubated 12 days at 5°C and 7 to 12 days at 22°C. Twenty fruit of each cultivar were used—ten were inoculated, and ten uninoculated fruit served as controls. Lesions developed on all inoculated fruit but not on uninoculated controls. Lesions were spherical, chocolate brown, and firm with no evidence of external mycelia. Lesion morphology was similar on all cultivars. P. syringae was reisolated from lesion margins of all infected fruit. This postharvest decay of apples has not been observed in the Hood River Valley since 1991. Fruit rot of apples caused by P. syringae is known in Canada (1) and is common in the United Kingdom (2), but has not been reported previously in the United States. To our knowledge, this is the first report of postharvest decay of apples by P. syringae in the United States. References: (1) R. G. Ross and C. O. Gourley. Can. Plant Dis. Surv. 49:33, 1969. (2) A. L. Snowdon. A Color Atlas of Postharvest Diseases. CRC Press, Inc., Boca Raton, FL, 1990. (3) G. M. Waterhouse. The Genus Phytophthora. Misc. Publ. 12. The Commonwealth Mycological Institute, Kew, Surrey, England, 1956.


Plant Disease ◽  
2012 ◽  
Vol 96 (3) ◽  
pp. 455-455 ◽  
Author(s):  
J.-H. Park ◽  
J. Juzwik

Multiple annual cankers were observed on the upper main stems of bitternut hickory (Carya cordiformis) exhibiting top dieback in Indiana, Iowa, Minnesota, New York, Ohio, and Wisconsin during a 2006 to 2008 survey of declining hickory. The top-killed trees had normal-sized, green leaves below and the cankers were oval, sunken, and bounded by heavy callus that seemed to arrest further canker expansion. Fusarium solani was consistently isolated from the margins of inner bark lesions or discolored sapwood of the cankers. When cultured on potato dextrose agar, the isolates grew rapidly with abundant aerial mycelium. On carnation leaf agar, thick-walled macroconidia with 4 to 5 septa were produced in cream, blue-green, or blue sporodochia. Macroconidia were generally cylindrical with a blunt or rounded apical cell and a rounded or foot-shaped basal cell. Microconidia were oval to kidney shaped with 0 to 1 septa and were produced in false heads on elongate monophialides. Chlamydospores were formed singly or in pairs. These morphological characteristics are consistent with descriptions of F. solani (2). The identities of 42 representative isolates were confirmed by sequencing the translation elongation factor (tef) 1-α gene. BLAST analysis of the sequences from each isolate against the GenBank and FUSARIUM-ID database found 98 to 100% similarities to F. solani isolates (GenBank Accession Nos. DQ246841, DQ247025, DQ247282, and DQ247436 and FUSARIUM-ID isolate FD01041). Two haplotypes (BB and BC) were distinguished based on the tef 1-α gene sequences that differed by 10 bp. Pathogenicity tests were conducted with two isolates of each haplotype on asymptomatic C. cordiformis (12 to 21 cm in diameter) in forest stands. In May 2009 in Wabasha County, MN, 0.1-ml spore suspensions (1 × 104 macroconidia/ml) or sterile water was placed in one of three holes (0.6 cm in diameter) drilled to the cambium of 12 trees. The holes were sealed with moist cotton and moldable putty. A duplicate trial, but with BB and BC isolates from Wisconsin, was initiated in Chippewa County, WI in June 2009. The extent of inner bark necrosis was assessed 13 months after inoculation in both sites. Inoculations with F. solani in Minnesota resulted in inner bark lesions with average lengths of 20 and 30 mm for the BB and BC haplotypes, respectively. In Wisconsin, BB and BC haplotypes caused inner bark lesions with average lengths of 34 and 38 mm, respectively. While sunken or open cankers were found for all the BC isolate inoculations, relatively small and callus-bounded cankers were found for BB isolate inoculations. All control wounds were callus-closed with average wound lengths of 12 and 23 mm in Minnesota and Wisconsin, respectively. The same haplotype of F. solani used for inoculation was recovered from each canker as confirmed by analysis of tef 1-α gene sequences. F. solani was not obtained from control wounds. To our knowledge, this is the first report of a canker caused by F. solani on bitternut hickory (1). The same fungus has been previously reported to cause cankers on stems of other hardwood tree genera in the eastern United States and Canada. We hypothesize that numerous main-stem cankers caused by F. solani lead to top dieback of bitternut hickory. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006.


Plant Disease ◽  
2004 ◽  
Vol 88 (2) ◽  
pp. 114-118 ◽  
Author(s):  
C. L. Xiao ◽  
J. D. Rogers

During a survey of postharvest diseases in stored pears conducted in the 2001-02 storage season, a new postharvest fruit rot in d'Anjou pears was discovered in Washington State. Symptoms of this disease were stem-end rot, calyx-end rot, and wound-associated rot, which presumably originated from infections of stem, calyx, and wounds on the fruit surfaces, respectively. The decayed area on the fruit was firm or spongy and appeared brown. During the late storage period from March to May 2002, this disease was observed in 19 of 39 lots and accounted for 2 to 21% of all decayed fruit. The causal agent, Sphaeropsis sp., was consistently recovered from decayed fruit with the symptoms described above. Two isolates of the fungus were used for pathogenicity tests on pear fruit. Decay symptoms developed on fruit inoculated with spore suspensions of the fungus on the stem, calyx, and wounds on the fruit surface. The fungus was reisolated from these decayed fruit. The fungus, Sphaeropsis pyriputrescens sp. nov., was characterized and described. On potato dextrose agar (PDA), oatmeal agar, and pear juice agar at 20°C, the fungus grew at mean rates of 21, 15, and 24 mm day-1 in colony diameter, respectively. On PDA, the fungus formed a circular colony with dense, hyaline hyphae and a few or some aerial mycelia. Colonies appeared light yellow to yellow on 2-week-old PDA cultures. The fungus grew at temperatures from 0 to 25°C, with optimum growth between 15 and 20°C, little or no growth at 30°C, and no growth at 35°C. This is a low-temperature species.


2015 ◽  
Vol 34 (329) ◽  
pp. 2-11 ◽  
Author(s):  
Lelde Grantina-Ievina

Abstract Apple fruit rot can be caused by several fungi. In Northern Europe, the most common storage rot, Bull’s eye rot, is caused by Neofabraea spp., bitter rot by Colletotrichum spp., brown rot by Monilinia fructigena, grey mould is caused by Botrytis cinerea and Fusarium rot by several Fusarium species. Blue mold decay caused by Penicillium expansum is an important disease in several European countries. Incidence of different causal agents may vary depending on cultivar, climate during growing season and agricultural practices. The main objective of the study was to obtain baseline information about apple rot-causing fungi, their incidence during fruit storage and to evaluate the fungicide sensitivity of most of isolated fungal species. The study was performed during the storage period of apples after the growth season of 2013. Rotten apples were sorted in the storage and part of them was brought to the laboratory in order to obtain fungal isolates. Fungi were identified according to the morphological characteristics and sequencing of the ITS1-5.8S-ITS2 region. During storage in February and March the total percentage of rotten apples in various cultivars varied from 3.6 to 58.9%. All post-harvest diseases described in Northern Europe were detected. In part of the storehouses apple rot caused by Cadophora luteo-olivacea was observed. Alternaria spp. and Cladosporium spp. were detected on few apples as secondary infection agents. Using the most often isolated fungal species, sensitivity tests were performed against five commonly used fungicides. In general, the sensitivity of tested fungi to the fungicides was high with exception of several Neofabraea and Alternaria isolates.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1477-1477 ◽  
Author(s):  
S. Inghelbrecht ◽  
B. Gehesquière ◽  
K. Heungens

Belgium is one of the most important Rhododendron-producing areas in Europe, with an annual sale of approximately 1.6 million plants. In June 2010, an outbreak of leaf spots on several thousands of Rhododendron cv. Marcel Menard plants took place at a nursery near Gent. Diseased plants showed dark brown leaf spots that enlarged and finally resulted in leaf drop. Symptoms developed most explicitly on this cultivar, especially after standard repotting during May or June and when repotting was followed by a few days of unusually warm temperatures (30 to 35°C). The leading edge of diseased leaf tissue was excised, surface disinfected with 1% NaOCl for 60 s, and rinsed twice with sterile distilled water before being plated onto potato dextrose agar (PDA). After 5 days of incubation at 21°C in the dark, Cylindrocladium-like fungal colonies with white aerial mycelium and amber-brown growth within the agar consistently developed. Mycelium was transferred aseptically to fresh plates of PDA and incubated for 10 to 14 days at 17°C under a 12-h fluorescent light regimen to study the morphological characteristics. Conidiophores showed a penicillate arrangement of fertile branches, producing two to six phialides. They arose from a stipe and terminated in a clavate vesicle (3 to 5 μm). Conidia were straight, cylindrical, rounded at both ends, three septate, and measured 60 to 70 × 4 to 6 μm. Yellow subglobose to oval perithecia were abundantly produced. Asci were clavate, four spored, and measured 100 to 150 × 15 to 30 μm. Ascospores were hyaline, three septate, and measured 50 to 65 × 5 to 6 μm. These characteristics are consistent with those of Calonectria colhounii Peerally (anamorph Cylindrocladium colhounii) (1). The β-tubulin gene was PCR-amplified with DNA extracted from the mycelium and the T1 and T2 primers (3), sequenced directly with a BigDye Terminator Cycle Sequencing Kit (Applied Biosystems, Carlsbad, CA), and the DNA sequence was deposited (GenBank Accession No. JF802784). BLASTn alignment showed 99% identity (525 of 526 nucleotides) with the β-tubulin DNA sequence derived from Calonectria colhounii CBS 293.79 (GenBank Accession No. DQ190564). A spore suspension (105 conidia per ml) was prepared from a 1-week-old culture, and 50-μl drops were used to inoculate the abaxial side of 10 detached 1-year-old leaves from Rhododendron cv. Cunningham's White. Ten control leaves were inoculated with water. The leaves were placed in a moist chamber and incubated at 21°C in the dark. After 5 to 6 days, all spore-inoculated leaves showed lesions identical to those on the naturally infected leaves, while the water-inoculated leaves remained symptom free. Following the original procedure, the fungus was reisolated from the diseased leaves and the morphological characteristics of the resulting culture were the same as those of the inoculated isolate, completing Koch's postulates. This fungus has been described on Rhododendron in the United States (2), but to our knowledge, this is the first record of Calonectria colhounii on Rhododendron in Belgium. References: (1) P. W. Crous. Taxonomy and Pathology of Cylindrocladium (Calonectria) and Allied Genera. The American Phytopathological Society, St. Paul, MN, 2002. (2) P. W. Crous et al. Stud. Mycol. 55:213, 2006. (3) K. O'Donnell and E. Cigelnik. Mol. Phylogenet. Evol. 7:103, 1997.


Sign in / Sign up

Export Citation Format

Share Document