scholarly journals First Inventory of Fungi in Symptomless and Symptomatic Chinese Mesona Indicates Phytopathological Threat

Plant Disease ◽  
2020 ◽  
Vol 104 (9) ◽  
pp. 2391-2397
Author(s):  
Chung-Wei Hsieh ◽  
Ying-Ying Chuang ◽  
Ming-Zhe Lee ◽  
Roland Kirschner

Chinese mesona (Platostoma palustre) plays an important role as special crop in Southeast Asia and Taiwan for the production of herbal tea, grass jelly, and further processed food. In order to assess the potential threat of fungi to Chinese mesona, we surveyed isolates from symptomless plants in the area of mesona production, as well as from leaf spots of potted plants in a garden shop and a plantation in a botanical garden in Taiwan. From leaves, stems, and roots of 15 symptomless plants sampled at five collection events over two years, 154 isolates from 810 surface-sterilized plant fragments were obtained and identified based on DNA sequence data of the internal transcribed spacer region, and partially of the β-tubulin and histone H3 genes. The most common species belonged to the genera Cercospora, Colletotrichum, and Fusarium and were considered to be potential plant pathogens. Latent pathogenicity was confirmed by an infection experiment with an endophytic strain of Corynespora cassiicola. Observation of leaf spot disease associated with Cercospora kikuchii suggested pathogenicity of this fungus, which was also isolated as an endophyte from symptomless leaves. We hypothesize that the most common endophytic fungi are latent pathogens in the host and may cause plant disease when the host becomes weakened by senescence or changed cultivation condition. Leaf spots of plants in the botanical garden were associated with a species of Pseudocercospora, which was not found among the endophytic isolates and is newly described based on morphology and analysis of translation elongation factor 1 alpha gene sequences.

Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


MycoKeys ◽  
2021 ◽  
Vol 77 ◽  
pp. 65-95
Author(s):  
Wenxiu Sun ◽  
Shengting Huang ◽  
Jiwen Xia ◽  
Xiuguo Zhang ◽  
Zhuang Li

Diaporthe species have often been reported as plant pathogens, endophytes and saprophytes, commonly isolated from a wide range of infected plant hosts. In the present study, twenty strains obtained from leaf spots of twelve host plants in Yunnan Province of China were isolated. Based on a combination of morphology, culture characteristics and multilocus sequence analysis of the rDNA internal transcribed spacer region (ITS), translation elongation factor 1-α (TEF), β-tubulin (TUB), calmodulin (CAL), and histone (HIS) genes, these strains were identified as eight new species: Diaporthe camelliae-sinensis, D. grandiflori, D. heliconiae, D. heterostemmatis, D. litchii, D. lutescens, D. melastomatis, D. pungensis and two previously described species, D. subclavata and D. tectonendophytica. This study showed high species diversity of Diaporthe in tropical rain forests and its hosts in south-western China.


Author(s):  
P.W. Crous ◽  
J. Carlier ◽  
V. Roussel ◽  
J.Z. Groenewald

The Sigatoka leaf spot complex on Musa spp. includes three major pathogens: Pseudocercospora, namely P. musae (Sigatoka leaf spot or yellow Sigatoka), P. eumusae (eumusae leaf spot disease), and P. fijiensis (black leaf streak disease or black Sigatoka). However, more than 30 species of Mycosphaerellaceae have been associated with Sigatoka leaf spots of banana, and previous reports of P. musae and P. eumusae need to be re-evaluated in light of recently described species. The aim of the present study was thus to investigate a global set of 228 isolates of P. musae, P. eumusae and close relatives on banana using multigene DNA sequence data [internal transcribed spacer regions with intervening 5.8S nrRNA gene (ITS), RNA polymerase II second largest subunit gene (rpb2), translation elongation factor 1-alpha gene (tef1), beta-tubulin gene (tub2), and the actin gene (act)] to confirm if these isolates represent P. musae, or a closely allied species. Based on these data one new species is described, namely P. pseudomusae, which is associated with leaf spot symptoms resembling those of P. musae on Musa in Indonesia. Furthermore, P. eumusae, P. musae and P. fijiensis are shown to be well defined taxa, with some isolates also representing P. longispora. Other genera encountered in the dataset are species of Zasmidium (Taiwan leaf speckle), Metulocladosporiella (Cladosporium leaf speckle) and Scolecobasidium leaf speckle.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1156-1165 ◽  
Author(s):  
M. A. Bautista-Cruz ◽  
G. Almaguer-Vargas ◽  
S. G. Leyva-Mir ◽  
M. T. Colinas-León ◽  
K. C. Correia ◽  
...  

Persian lime (Citrus latifolia Tan.) is an important and widely cultivated fruit crop in several regions of Mexico. In recent years, severe symptoms of gummosis, stem cankers, and dieback were detected in the Persian lime-producing region in the states of Veracruz and Puebla, Mexico. The aims of this study were to identify the species of Lasiodiplodia associated with these symptoms, determine the distribution of these species, and test their pathogenicity and virulence on Persian lime plants. In 2015, symptomatic samples were collected from 12 commercial Persian lime orchards, and 60 Lasiodiplodia isolates were obtained. Fungal identification of 32 representative isolates was performed using a phylogenetic analysis based on DNA sequence data of the internal transcribed spacer region and part of the translation elongation factor 1-α and β-tubulin genes. Sequence analyses were carried out using the Maximum Likelihood and Bayesian Inference methods. Six Lasiodiplodia species were identified as Lasiodiplodia pseudotheobromae, Lasiodiplodia theobromae, Lasiodiplodia brasiliense, Lasiodiplodia subglobosa, Lasiodiplodia citricola, and Lasiodiplodia iraniensis. All Lasiodiplodia species of this study are reported for the first time in association with Persian lime in Mexico and worldwide. L. pseudotheobromae (46.9% of isolates) was the most frequently isolated species followed by L. theobromae (28.1%) and L. brasiliense (12.5%). Pathogenicity on Persian lime young plants using a mycelial plug inoculation method showed that all identified Lasiodiplodia species were able to cause necrotic lesions and gummosis, but L. subglobosa, L. iraniensis, and L. pseudotheobromae were the most virulent.


Plant Disease ◽  
2021 ◽  
Author(s):  
Haixia Ding ◽  
Wan Peng Dong ◽  
Wei Di Mo ◽  
Lijuan Peng ◽  
Zuo-Yi Liu

Chinese rose (Rosa chinensis Jacq.) is cultivated for edible flowers in southwestern China (Zhang et al. 2014). In March 2020, a leaf spot disease was observed on about 3-5% leaves of Chinese rose cultivar ‘Mohong’ in Guizhou Botanical Garden (26°37' 45'' N, 106°43' 10'' E), Guiyang, Guizhou province, China. The symptomatic plants displayed circular, dark brown lesions with black conidiomata in grey centers on leaves, and leaf samples were collected. After surface sterilization (0.5 min in 75% ethanol and 2 min in 3% NaOCl, washed 3 times with sterilized distilled water) (Fang 2007), small pieces of symptomatic leaf tissue (0.3 × 0.3 cm) were plated on potato dextrose agar (PDA) and incubated at 28oC for about 7 days. Two single-spore isolates, GZUMH01 and GZUMH02, were obtained, which were identical in morphology and molecular analysis. Therefore, the representative isolate GZUMH01 was used for further study. The pathogenicity of GZUMH01 was tested through a pot assay. Ten healthy plants were scratched with a sterilized needle on the leaves. Plants were inoculated by spraying a spore suspension (106 spores ml-1) onto leaves until runoff, and the control leaves sprayed with sterile water. The plants were maintained at 25°C with high relative humidity (90 to 95%) in a growth chamber. The pathogenicity test was carried out three times using the method described in Fang (2007). The symptoms developed on all inoculated leaves but not on the control leaves. The lesions were first visible 48 h after inoculation, and typical lesions similar to those observed on field plants after 7 days. The same fungus was re-isolated from the infected leaves but not from the non-inoculated leaves, fulfilling Koch’s postulates. Fungal colonies on PDA were villiform and greyish. The conidia were abundant, oval-ellipsoid, aseptate, 15.8 (13.7 to 18.8) × 5.7 (4.3 to 6.8) µm. The fungal colonies, hyphae, and conidia were consistent with the descriptions of Colletotrichum boninense Moriwaki, Toy. Sato & Tsukib. (Damm et al. 2012; Moriwaki et al. 2003). The pathogen was confirmed to be C. boninense by amplification and sequencing of the internal transcribed spacer region (ITS), the glyceraldehyde-3-phosphate dehydrogenase (GADPH), actin (ACT), and chitin synthase 1 (CHS-1) genes using primers ITS1/ITS4, GDF1/GDR1, ACT512F/ACT783R, and CHS-79F/CHS-345R, respectively (Damm et al. 2012; Moriwaki et al. 2003). The sequences of the PCR products were deposited in GenBank with accession numbers MT845879 (ITS), MT861006 (GADPH), MT861007 (ACT), and MT861008 (CHS-1). BLAST searches of the obtained sequences of the ITS, GADPH, ACT, and CHS-1 genes revealed 100% (554/554 nucleotides), 100% (245/245 nucleotides), 97.43% (265/272 nucleotides), and 99.64% (279/280 nucleotides) homology with those of C. boninense in GenBank (JQ005160, JQ005247, JQ005508, and JQ005334, respectively). Phylogenetic analysis (MEGA 6.0) using the maximum likelihood method placed the isolate GZUMH01 in a well-supported cluster with C. boninense. The pathogen was thus identified as C. boninense based on its morphological and molecular characteristics. To our knowledge, this is the first report of the anthracnose disease on R. chinensis caused by C. boninense in the world.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 356-356
Author(s):  
S. Rooney-Latham ◽  
C. L. Blomquist ◽  
D. G. Fogle ◽  
E. G. Simmons

The genus Scilla (Hyacinthaceae) includes more than 50 species of perennial, flowering bulbs grown in landscapes worldwide. In December 2000 and May 2009, an unknown leaf spot disease on Scilla peruviana was submitted to the California Department of Food and Agriculture Plant Pest Diagnostic Lab. Samples were collected during routine phytosanitary inspections of production fields in Santa Cruz County in 2000 and Monterey County in 2009. The disease was detected before plants flowered in one field at each location each year and appeared to have a scattered distribution. Foliar spots were large, elliptical to oblong with grayish black centers and brown margins. Yellow halos surrounded many of the spots. Examination of the bulb material revealed small necrotic patches on the outer bulb scales. A rapidly growing fungus was isolated on one-half-strength acidified potato dextrose agar (APDA) from the sporulating leaf spots and necrotic patches on the bulbs. The colonies were greenish gray and became dark olivaceous with age. Dictyospores, which formed on simple to branched, geniculate conidiophores, were oblong, fusiform or obclavate and usually had a triangular apical cell. They were initially hyaline, turning olivaceous brown with age. Conidia measured 14 to 39 × 8 to 13 μm (average 24.6 × 9.9 μm) typically with two to four (but up to seven) thick, transverse septa and one to two longitudinal septa. Morphologically, the fungus matched the description of Embellisia hyacinthi de Hoog & Miller (1,3). To confirm pathogenicity, four leaves of four S. peruviana plants were inoculated by taking colonized mycelial plugs from 2-week-old cultures and placing them in a plastic screw-cap lid filled with sterile water. The water plus mycelial plug suspension in the lid was then clipped to the adaxial side of a pushpin-wounded leaf (4). Plants were placed in a dark dew chamber at 20°C for 48 h and then moved to a growth chamber at 20°C with a 12-h photoperiod. After 48 h, the clips, caps, and plugs were removed. An equal number of control plants were wounded and mock inoculated with noncolonized APDA agar plugs and the experiment was repeated. Leaf lesions were visible 3 days after clip removal and expanded to an average of 26 × 10 mm, 14 days after inoculation. Sporulation was observed in the lesions after 5 to 7 days and the fungus was isolated from all inoculated leaves. No symptoms developed on the control leaves. DNA sequencing of the internal transcribed spacer region of the isolate (GenBank Accession No. HQ425562) using primers ITS1 and ITS4 matched the identity of E. hyacinthi (2,4). E. hyacinthi has been reported as a foliar and bulb pathogen on Hyacinthus, Freesia, and Scilla in Japan and Europe including Great Britain. Bulbs infected with E. hyacinthi are generally less sound and less valuable than noninfected bulbs (1). To our knowledge, this is the first report of the disease on S. peruviana in California. References: (1) G. S. de Hoog and P. J. Muller. Neth. J. Plant Pathol. 79:85, 1973. (2) B. Pryor and D. M. Bigelow. Mycologia 95:1141, 2003. (3) E. Simmons. Mycotaxon 17:216, 1983. (4) L. E. Yakabe et al. Plant Dis. 93:883, 2009.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 754
Author(s):  
Nahid Espargham ◽  
Hamid Mohammadi ◽  
David Gramaje

Citrus trees with cankers and dieback symptoms were observed in Bushehr (Bushehr province, Iran). Isolations were made from diseased cankers and branches. Recovered fungal isolates were identified using cultural and morphological characteristics, as well as comparisons of DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, translation elongation factor 1α, β-tubulin, and actin gene regions. Dothiorella viticola, Lasiodiplodia theobromae, Neoscytalidium hyalinum, Phaeoacremonium (P.) parasiticum, P. italicum, P. iranianum, P. rubrigenum, P. minimum, P. croatiense, P. fraxinopensylvanicum, Phaeoacremonium sp., Cadophora luteo-olivacea, Biscogniauxia (B.) mediterranea, Colletotrichum gloeosporioides, C. boninense, Peyronellaea (Pa.) pinodella, Stilbocrea (S.) walteri, and several isolates of Phoma, Pestalotiopsis, and Fusarium species were obtained from diseased trees. The pathogenicity tests were conducted by artificial inoculation of excised shoots of healthy acid lime trees (Citrus aurantifolia) under controlled conditions. Lasiodiplodia theobromae was the most virulent and caused the longest lesions within 40 days of inoculation. According to literature reviews, this is the first report of L. theobromae and N. hyalinum on citrus in Iran. Additionally, we report several Phaeoacremonium species, S. walteri, Pa. pinodella and C. luteo-olivacea on citrus trees for the first time in the world.


MycoKeys ◽  
2018 ◽  
Vol 35 ◽  
pp. 1-25 ◽  
Author(s):  
Yu Pei Tan ◽  
Pedro W. Crous ◽  
Roger G. Shivas

Several unidentified specimens of Curvularia deposited in the Queensland Plant Pathology Herbarium were re-examined. Phylogenetic analyses based on sequence data of the internal transcribed spacer region, partial fragments of the glyceraldehyde-3-phosphate dehydrogenase and the translation elongation factor 1-α genes, supported the introduction of 13 novel Curvularia species. Eight of the species described, namely, C.beasleyi sp. nov., C.beerburrumensis sp. nov., C.eragrosticola sp. nov., C.kenpeggii sp. nov., C.mebaldsii sp. nov., C.petersonii sp. nov., C.platzii sp. nov. and C.warraberensis sp. nov., were isolated from grasses (Poaceae) exotic to Australia. Only two species, C.lamingtonensis sp. nov. and C.sporobolicola sp. nov., were described from native Australian grasses. Two species were described from hosts in other families, namely, C.coatesiae sp. nov. from Litchichinensis (Sapindaceae) and C.colbranii sp. nov. from Crinumzeylanicum (Amaryllidaceae). Curvulariareesii sp. nov. was described from an isolate obtained from an air sample. Furthermore, DNA sequences from ex-type cultures supported the generic placement of C.neoindica and the transfer of Drechsleraboeremae to Curvularia.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 94-104 ◽  
Author(s):  
Carmen Berlanas ◽  
Sonia Ojeda ◽  
Beatriz López-Manzanares ◽  
Marcos Andrés-Sodupe ◽  
Rebeca Bujanda ◽  
...  

In this study, 3,426 grafted grapevines ready to be planted from 15 grapevine nursery fields in Northern Spain were inspected from 2016 to 2018 for black-foot causing pathogens. In all, 1,427 isolates of black-foot pathogens were collected from the asymptomatic inner tissues of surface sterilized secondary roots and characterized based on morphological features and DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, histone H3, translation elongation factor 1-alpha and β-tubulin genes. Eleven species belonging to the genera Dactylonectria, Ilyonectria, Neonectria, and Thelonectria were identified, including Dactylonectria alcacerensis, D. macrodidyma, D. novozelandica, D. pauciseptata, D. torresensis, Ilyonectria liriodendri, I. pseudodestructans, I. robusta, Neonectria quercicola, Neonectria sp. 1, and Thelonectria olida. In addition, two species are newly described, namely D. riojana and I. vivaria. Twenty-four isolates representing 13 black-foot species were inoculated onto grapevine seedlings cultivar ‘Tempranillo’. The pathogenicity tests detected diversity in virulence among fungal species and between isolates within each species. The most virulent species was D. novozelandica isolate BV-0760, followed by D. alcacerensis isolate BV-1240 and I. vivaria sp. nov. isolate BV-2305. This study improves our knowledge on the etiology and virulence of black-foot disease pathogens, and opens up new perspectives in the study of the endophytic phase of these pathogens in grapevines.


Plant Disease ◽  
2020 ◽  
Author(s):  
Ashish Adhikari ◽  
Xuechun Wang ◽  
Brett Lane ◽  
Philip F Harmon ◽  
Erica Goss

Guinea grass is an invasive perennial C4 grass and is a common weed around agricultural crops in Louisiana, Texas, and Hawaii, USA (Overholt and Franck 2019). In November 2018, leaf spots were observed on Guinea grass occurring in an organic garden located in Gainesville, Florida, USA. Lesions were oblong to irregular, dark grey to brownish center with pale-yellow to brownish black margin. Lesions had coalesced, forming necrotic margins that spread from the leaf tip, resulting in leaf blight and collapse of the canopy. Pieces of symptomatic leaf blades (5 sq cm) were surface sterilized (1 min), washed with sterile distilled water and plated onto water agar media plates. Plates were incubated at 27°C under 12-h light/dark for 3 to 5 days. Grey to black cottony mycelium was consistent on all plates and produced conidia characteristic of Bipolaris spp. Conidia were transferred to potato dextrose agar (PDA) plates with a 0.5 mm diameter sterile needle. Three isolates GG1, GG2 and GG3 were successfully grown on PDA. Conidia were black to brown colored, distoseptate with 3 to 8 septa and measured from (60.6- )70-105(-139.8) × (16.0-)17-23(-25.9) μm (avg: 93.3 μm, n=35, SD = 20.6; avg = 21.3 μm, n = 35, SD = 2.89). Conidiophores were in groups or single, brown, smooth and straight, septate and swollen at upper tip. Sigma Extract-N-Amp was used for genomic DNA extraction. Primers ITS1/ITS4 and GPD1/GPD2 (Berbee et al. 1999) were used to amplify and sequence the internal transcribed spacer region (ITS) and partial glyceraldehyde-3-phosphate dehydrogenase (GPDH) gene, respectively. Sequences were aligned using MUSCLE and alignment was trimmed for length. Maximum likelihood phylogenetic trees were constructed with 1,000 bootstrap samples based on the K2+G substitution model, selected by BIC for these two loci using Mega X (Kumar et al. 2018). The ITS and GPDH sequences of GG1, GG2 and GG3 (Genbank accessions MT514518-20, MT576654-56), grouped with B. yamadae isolates CPC_28807 and CBS_202.29 in phylogenetic trees (Marin-Felix et al. 2017). All three isolates from Guinea grass were inoculated on Sach’s agar (Luttrell 1958) at 27°C under 12-h light/dark for a week, but no sexual morph was observed, and consistent for two repeated inoculations. To fulfill Koch’s postulates, one isolate, GG1, was used. Conidia were harvested from a one-week-old colony grown on PDA incubated at 27°C and 12-h light/dark cycle. The concentration of the conidial suspension was adjusted to 105 conidia/ml using a hemocytometer. Using a Passche H-202S airbrush sprayer, five-week-old seedlings of Guinea grass were sprayed until runoff with the conidia suspension or 0.5% tween water only. Each treatment included four replicates and the experiment was repeated. Leaf spot symptoms were observed on the seedlings inoculated with conidia, whereas seedlings sprayed with water were asymptomatic. Cultures with the expected morphology were isolated from symptomatic leaf blades and absent from control plants. To our knowledge, this is the first report of leaf spot on Guinea grass caused by B. yamadae in Florida, USA. B. yamadae was previously reported from Guinea grass in India, and from other Panicum species in the northern USA (Farr and Rossman 2019). B. yamadae was also isolated from sugarcane in Cuba and China, and corn in Japan (Manamgoda et al. 2014, Raza et al. 2019), which suggests that it has the potential to impact agronomic crops in Florida, such as sugarcane and corn.


Sign in / Sign up

Export Citation Format

Share Document