scholarly journals Microbial Communities Associated with Potato Common Scab-Suppressive Soil Determined by Pyrosequencing Analyses

Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 718-725 ◽  
Author(s):  
Noah Rosenzweig ◽  
James M. Tiedje ◽  
John F. Quensen ◽  
Qingxiao Meng ◽  
Jianjun J. Hao

Potato common scab, caused by Streptomyces spp., is an annual production problem for potato growers, and not effectively controlled by current methods. A field with naturally occurring common scab suppression has been identified in Michigan, and confirmed to have a biological basis for this disease suppression. This field and an adjacent scab nursery conducive to disease were studied using pyrosequencing to compare the two microbial communities. Total DNA was extracted from both the disease-conducive and -suppressive soils. A phylogenetically taxon-informative region of the 16S rRNA gene was used to establish operational taxonomic units (OTUs) to characterize bacterial community richness and diversity. In total, 1,124 OTUs were detected and 565 OTUs (10% dissimilarity) were identified in disease-conducive soil and 859 in disease-suppressive soil, including 300 shared both between sites. Common phyla based on relative sequence abundance were Acidobacteria, Proteobacteria, and Firmicutes. Sequences of Lysobacter were found in significantly higher numbers in the disease-suppressive soil, as were sequences of group 4 and group 6 Acidobacteria. The relative abundance of sequences identified as the genus Bacillus was significantly higher by an order of magnitude in the disease-conducive soil.

Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 712-717 ◽  
Author(s):  
Qingxiao Meng ◽  
Jingfang Yin ◽  
Noah Rosenzweig ◽  
David Douches ◽  
Jianjun J. Hao

A field in East Lansing, MI, showed a decline of potato common scab compared with an adjacent potato field. To confirm that the decline was due to biological factors, the soil was assayed. In the greenhouse, putative common-scab-suppressive soil (SS) was either treated with various temperatures or mixed with autoclaved SS at various ratios. Pathogenic Streptomyces scabies was incorporated into the treated soil at 106 CFU/cm3 of soil, followed by planting of either potato or radish. Disease severity was negatively correlated with the percentage of SS in the mixture and positively correlated with temperature above 60°C. The soil was screened for four groups of potential antagonists (general bacteria, streptomycetes, fluorescent pseudomonads, and bacilli) pairing in culture with S. scabies. The frequency of antagonistic bacteria in SS was higher than common-scab-conducive soil (CS) in all four groups but only pseudomonads and streptomycetes were significantly higher. The population of pathogenic Streptomyces spp. in the rhizosphere of CS was significantly higher than SS. Dilution plating of CS and SS samples showed no clear trends or differences in populations of total fungi, total bacteria, streptomycetes, fluorescent pseudomonads, and bacilli but terminal restriction fragment polymorphism analysis revealed two distinct microbial communities were present in SS and CS.


Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 224-232 ◽  
Author(s):  
Lea H. Hiltunen ◽  
Jani Kelloniemi ◽  
Jari P. T. Valkonen

Potato common scab caused by several Streptomyces spp. is an important disease with no effective methods of control. Suppressiveness against common scab can develop in soil as a result of long-term potato monoculture and has been associated with nonpathogenic Streptomyces spp. To determine whether the development of scab suppressiveness could be enhanced, the effect of repeated applications of an antagonistic Streptomyces strain on common scab was investigated in a long-term field trial over 5 years. Streptomyces strain 272 applied annually at planting consistently suppressed development of common scab symptoms. On scab-susceptible potato cultivar Bintje, strain 272 reduced disease severity, on average, by 43%; whereas, on the scab-tolerant Nicola, the strain reduced both disease incidence and severity by 43 and 59%, respectively. Regardless of disease pressure, the combined use of strain 272 and the tolerant cultivar reduced the scab coverage to a negligible level. After a single application of strain 272, efficient disease suppression did not persist in the soil to the following growing season. However, when strain 272 was applied in three or more consecutive years, the soil remained suppressive to scab for at least 2 years beyond the last application, suggesting that, with repeated applications, it may be possible to enhance development of scab suppression in soil.


2016 ◽  
Vol 106 (7) ◽  
pp. 719-728 ◽  
Author(s):  
Tsuyoshi Tomihama ◽  
Yatsuka Nishi ◽  
Kiyofumi Mori ◽  
Tsukasa Shirao ◽  
Toshiya Iida ◽  
...  

Potato common scab (PCS), caused by pathogenic Streptomyces spp., is a serious disease in potato production worldwide. Cultural practices, such as optimizing the soil pH and irrigation, are recommended but it is often difficult to establish stable disease reductions using these methods. Traditionally, local farmers in southwest Japan have amended soils with rice bran (RB) to suppress PCS. However, the scientific mechanism underlying disease suppression by RB has not been elucidated. The present study showed that RB amendment reduced PCS by repressing the pathogenic Streptomyces population in young tubers. Amplicon sequencing analyses of 16S ribosomal RNA genes from the rhizosphere microbiome revealed that RB amendment dramatically changed bacterial composition and led to an increase in the relative abundance of gram-positive bacteria such as Streptomyces spp., and this was negatively correlated with PCS disease severity. Most actinomycete isolates derived from the RB-amended soil showed antagonistic activity against pathogenic Streptomyces scabiei and S. turgidiscabies on R2A medium. Some of the Streptomyces isolates suppressed PCS when they were inoculated onto potato plants in a field experiment. These results suggest that RB amendment increases the levels of antagonistic bacteria against PCS pathogens in the potato rhizosphere.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Robert S. Tegg ◽  
Ross Corkrey ◽  
Calum R. Wilson

Production of the phytotoxin thaxtomin A by pathogenic Streptomyces spp. is essential for induction of common scab disease in potato. The disease can be significantly reduced by a range of chemicals applied as foliar sprays before tuber initiation. We tested a range of chemicals that had previously demonstrated varying capacities to reduce common scab for both disease suppression and their ability to inhibit thaxtomin A toxicity in both ‘Desiree’ and ‘Russet Burbank’ potato. Our results for disease suppression generally supported previous studies. Our tuber slice assays with thaxtomin A showed a strong correlation between the ability of the chemical to suppress common scab symptom development and the ability of the chemical to inhibit thaxtomin A toxicity. A Bayesian measurement error linear regression model was derived for each cultivar and trial and demonstrated a clear positive relationship between disease and thaxtomin-A-induced necrosis. The relationships obtained were much stronger than would have been obtained without adjustment for measurement error. This demonstrates that disease mitigation using chemical foliar sprays is strongly correlated with the ability of the chemical to inhibit thaxtomin A toxicity, suggesting this mechanism as a key mode of action for understanding this novel disease control strategy.


Plant Disease ◽  
2009 ◽  
Vol 93 (12) ◽  
pp. 1329-1334 ◽  
Author(s):  
J. J. Hao ◽  
Q. X. Meng ◽  
J. F. Yin ◽  
W. W. Kirk

A novel strain of Streptomyces (named DS3024) was isolated from a potato field in Michigan in 2006. The taxonomy of the organism was determined by morphology, biochemistry, and genetic analysis. Analysis of the 16S ribosomal RNA gene sequence indicated that the organism was most similar to an isolate of Streptomyces sp., ME02-6979.3a, which is not pathogenic to potato tubers but is distinct from other known pathogenic Streptomyces spp. Strain DS3024 has genes that encode thaxtomin synthetase (txtAB), which is required for pathogenicity and virulence, and tomatinase (tomA), which is a common marker for many pathogenic Streptomyces spp. However, the nec1 gene (associated with virulence in most pathogenic Streptomyces spp.) was not detected. The new strain was capable of growth at pH 4.5, caused necrosis on potato tuber slices, and produced thaxtomin A. In greenhouse experiments, DS3024 caused scab symptoms on potato tubers similar to those caused by Streptomyces scabies on tubers of potato cv. Atlantic, which is scab susceptible. We propose that DS3024 is a new strain of Streptomyces capable of causing common scab on potato tubers. The prevalence of this strain of Streptomyces in potato-producing areas in the north-central United States has not been determined.


1998 ◽  
Vol 44 (8) ◽  
pp. 768-776 ◽  
Author(s):  
Linda L Kinkel ◽  
John H Bowers ◽  
Kyoko Shimizu ◽  
Eric C Neeno-Eckwall ◽  
Janet L Schottel

Thaxtomin A production in culture, potato common scab severity (percentage of tuber surface infected or number of lesions per tuber), and fatty acid profiles were determined for 78 Streptomyces isolates. Only pathogenic Streptomyces spp. (n = 17) produced thaxtomin A in culture. Thaxtomin A production in culture (µg/mL) was significantly positively correlated with the percentage of tuber surface infected (R = 0.60; p = 0.017) but not with the number of lesions per tuber (R = 0.37; p = 0.17). An increase of 1 µg/mL in thaxtomin A production corresponded to an 11% increase in disease severity (percentage of tuber surface infected). The data indicate that quantitative information on the ability of a particular pathogen isolate or population to produce thaxtomin A may be critical to understanding and predicting the disease potential of that population. Using cluster analysis of fatty acid data, 94% of 67 unknown field isolates grouped with other field isolates having the same pathogenicity (plus or minus).Key words: thaxtomin A, phytotoxin, potato scab.


2020 ◽  
Author(s):  
Cindy Hudec ◽  
Amy Novinscak ◽  
Martin Filion

Common scab (CS) is a potato disease that significantly decreases the market value of potato tubers following the development of necrotic lesions on their surface. Streptomyces scabiei is the main causal agent of CS; however, other closely related species, including S. acidiscabies and S. turgidiscabies, have also been shown to cause the disease. In this study, we characterized the genetic and phenotypic diversity of Streptomyces spp. causing CS in Prince Edward Island, the main potato-producing province in Canada. Two hundred and ninety-six pathogenic Streptomyces spp. isolates were retrieved from diseased tubers harvested from six fields located across a longitudinal geographical gradient. Genome fingerprinting analyses using Repetitive elements Polymerase Chain Reactions (PCR) (ERIC- and BOX-PCR) revealed 14 distinct genetic groups. Thirteen of them were taxonomically affiliated with S. scabiei, while the fourteenth group was affiliated with S. acidiscabies. Their geographical distribution was characterized and revealed that on average between six and eight different genetic groups were detected per field, with variable abundance. Virulence assays showed strong differences in virulence between the genetic groups, ranging them from low to highly virulent. Interestingly, pathogenic Streptomyces spp. populations in each field seem to be dominated by the most virulent genetic groups. The results obtained will contribute to better understand the population dynamic of pathogenic Streptomyces spp. causing common scab of potato and promoting the development of more efficient detection and intervention tools to manage this important potato disease.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 385
Author(s):  
Cheng Zhou ◽  
Zhongyou Ma ◽  
Xiaoming Lu ◽  
Lin Zhu ◽  
Jianfei Wang

Soil microbial community changes imposed by the cumulative effects of root-secreted phenolic acids (PAs) promote soil-borne pathogen establishment and invasion under monoculture systems, but the disease-suppressive soil often exhibits less soil-borne pathogens compared with the conducive soil. So far, it remains poorly understood whether soil disease suppressiveness is associated with the alleviated negative effects of PAs, involving microbial degradation. Here, the long-term monoculture particularly shaped the rhizosphere microbial community, for example by the enrichment of beneficial Pseudomonas species in the suppressive soil and thus enhanced disease-suppressive capacity, however this was not observed for the conducive soil. In vitro PA-degradation assays revealed that the antagonistic Pseudomonas species, together with the Xanthomonas and Rhizobium species, significantly increased the efficiency of PA degradation compared to single species, at least partially explaining how the suppressive soil accumulated lower PA levels than the conducive soil. Pot experiments further showed that this consortium harboring the antagonistic Pseudomonas species can not only lower PA accumulation in the 15-year conducive soils, but also confer stronger Fusarium wilt disease suppression compared with a single inoculum with the antagonistic bacteria. Our findings demonstrated that understanding microbial community functions, beyond the single direct antagonism, facilitated the construction of active consortia for preventing soil-borne pathogens under intensive monoculture.


Soil Research ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 35
Author(s):  
Lin Gao ◽  
Rui Wang ◽  
Jiaming Gao ◽  
Fangming Li ◽  
Guanghua Huang ◽  
...  

To clarify the differences between microbial communities resident in disease suppressive soil (DSS) and disease conducive soil (DCS) in tobacco cultivation, representative soil samples were collected from tobacco plantations in Shengjiaba, China, and the structure and diversity of the resident bacterial and fungal communities were analysed using high-throughput sequencing technology. Our results showed a greater number of operational taxonomic units associated with bacteria and fungi in DSS than in DCS. At the phylum level, abundances of Chloroflexi, Saccharibacteria, Firmicutes, and Planctomycetes in DSS were lower than in DCS, but abundance of Gemmatimonadetes was significantly higher. Abundances of Zygomycota and Chytridiomycota were higher in DSS than DCS, but abundance of Rozellomycota was significantly lower. At the genus level, abundances of 18 bacterial and nine fungal genera varied significantly between DSS and DCS. Relative abundances of Acidothermus, Microbacterium, Curtobacterium, and Colletotrichum were higher in DCS than DSS. The Shannon and Chao1 indices of DSS microbial communities were higher than those of DCS communities. High microbial diversity reduces the incidence of soil-borne diseases in tobacco plantations and promotes the formation of DSSs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanfen Zheng ◽  
Xiaobin Han ◽  
Donglin Zhao ◽  
Keke Wei ◽  
Yuan Yuan ◽  
...  

Recent studies have observed differing microbiomes between disease-suppressive and disease-conducive soils. However, it remains unclear whether the microbial keystone taxa in suppressive soil are critical for the suppression of diseases. Bacterial wilt is a common soil-borne disease caused by Ralstonia solanacearum that affects tobacco plants. In this study, two contrasting tobacco fields with bacterial wilt disease incidences of 0% (disease suppressive) and 100% (disease conducive) were observed. Through amplicon sequencing, as expected, a high abundance of Ralstonia was found in the disease-conducive soil, while large amounts of potential beneficial bacteria were found in the disease-suppressive soil. In the fungal community, an abundance of the Fusarium genus, which contains species that cause Fusarium wilt, showed a positive correlation (p < 0.001) with the abundance of Ralstonia. Network analysis revealed that the healthy plants had more complex bacterial networks than the diseased plants. A total of 9 and 13 bacterial keystone taxa were identified from the disease-suppressive soil and healthy root, respectively. Accumulated abundance of these bacterial keystones showed a negative correlation (p < 0.001) with the abundance of Ralstonia. To complement network analysis, culturable strains were isolated, and three species belonging to Pseudomonas showed high 16S rRNA gene similarity (98.4–100%) with keystone taxa. These strains displayed strong inhibition on pathogens and reduced the incidence of bacterial wilt disease in greenhouse condition. This study highlighted the importance of keystone species in the protection of crops against pathogen infection and proposed an approach to obtain beneficial bacteria through identifying keystone species, avoiding large-scale bacterial isolation and cultivation.


Sign in / Sign up

Export Citation Format

Share Document