scholarly journals First Report of Bacterial Leaf Blight of Carrot Caused by Xanthomonas hortorum pv. carotae in Korea

Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 275-275 ◽  
Author(s):  
I.-S. Myung ◽  
M.-J. Yoon ◽  
J.-Y. Lee ◽  
G.-D. Kim ◽  
M.-H. Lee ◽  
...  

In December 2012, symptoms of typical bacterial leaf blight were observed on carrot plants (Daucus carota L. subsp. sativus) cultivated in commercial fields in Kujwa, Jeju, Korea. The disease was detected in 40% of 50 fields surveyed with an incidence of 10% on average. The bacterial leaf blight lesions on leaf blades were elongated, dark brown to black with water-soaked edges and chlorotic halos. Lesions were also crescent-shaped to V-shaped on leaflets. Four bacterial isolates were recovered on trypticase soy agar from leaf lesions that were surface-sterilized in 70% ethyl alcohol for 20 s. Identity of the isolates was confirmed by PCR product (1,266-bp) using a specific primer set for Xanthomonas hortorum pv. carotae (Kendrick 1934) Vauterin et al. 1995, XhcPP03 (1). All isolates were gram-negative, aerobic rods with a single polar flagellum. Isolates were positive for catalase and negative for oxidase. In phenotypic tests for differentiation of Xanthomonas (2), the isolates positive for mucoid growth on yeast extract-dextrose-calcium carbonate agar, growth at 35°C, hydrolysis of esculin, protein digestion, alkaline in litmus milk, acid production from arabitol, and utilization of glycerol and melibiose. The isolates were negative for growth on SX medium, hydrolysis of starch, and ice nucleation. The gyrB gene (863 bp) and the rpoD gene (870 bp) were sequenced to aid identification of the original isolates using published PCR primer sets, Xgyr1BF/Xgyr1BR and XrpoD1F/XrpoD1R (4), respectively. Sequences of the gyrB gene (GenBank accessions KC920729 to KC920732) from the carrot isolates shared 100% sequence identity with that of the X. hortorum pv. carotae strain NCPPB 425 (EU285243). In phylogenetic analyses based on the partial sequences of the gyrB and the rpoD genes for Xanthomonas spp. available at NCBI (4), and sequences of the carrot isolates (KC920734 to KC920737 for rpoD gene) using the Neighbor-joining method in MEGA Version 5.1 (3), the isolates were clustered in the X. hortorum-cynarae-garnderi group. Pathogenicity of the isolates was tested by spray inoculation with a bacterial suspension (106 CFU/ml) prepared in sterile distilled water at 6 to 7 true-leaf stage (three plants per isolate). Sterile distilled water was used as negative control. The inoculated plants were incubated in a growth chamber (25°C and 95% relative humidity [RH]) for 15 hr, and then transferred to a greenhouse at 24 to 28°C and 65% RH. Characteristic leaf blight symptoms developed on inoculated carrot plants, while no symptoms were observed on the negative control plants 14 days after inoculation. The bacterium was re-isolated from symptomatic tissue and the identity confirmed through gyrB gene sequence analysis (4). Based on PCR, morphological and phenotypic tests, sequence analysis, and pathogenicity assays, the isolates were identified as X. hortorum pv. carotae. To our knowledge, this is the first report of bacterial leaf blight of carrot caused by X. hortorum pv. carotae in Korea. The detection of this pathogen could have a significant economic impact due to yield losses from disease development. Consolidation of quarantine inspection on imported carrot seeds needs to control an outbreak of the disease. Crop rotation and plowing are recommended to reduce incidence of the disease in the infested fields. References: (1) J. A. Kimbrel et al. Mol. Plant Pathol. 12:580, 2011. (2) N. W. Schaad et al. Page 189 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. N. W. Schaad et al., eds. The American Phytopathological Society, St. Paul, MN, 2001. (3) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011. (4) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.

Plant Disease ◽  
2021 ◽  
Author(s):  
José Luis Palomo Gómez ◽  
Maria Shima ◽  
Adela Monterde ◽  
Inmaculada Navarro ◽  
Silvia Barbé ◽  
...  

In September 2019, symptoms resembling those of bacterial leaf blight were observed on carrot plants (Daucus carota L. subsp. sativus Hoffm.) cv. Romance cultivated in commercial plots in Chañe (Segovia), Spain. Symptoms were observed in two plots surveyed representing three hectares, with an incidence greater than 90%, and also in some plots in other nearby municipalities sown with the same batch of seeds. The lesions observed at the ends of the leaves were initially yellow that develop dark brown to black with chlorotic halos on leaflets that turned necrotic. Yellow, Xanthomonas-like colonies were isolated onto YPGA medium (Ridé 1969) from leaf lesions. Two bacterial isolates were selected and confirmed by real-time PCR using a specific primer set for Xanthomonas hortorum pv. carotae (Temple et al. 2013). All isolates were gram-negative, aerobic rods positive for catalase, able of hydrolyzing casein and aesculin and growing at 2% NaCl, while were negative for oxidase and urease tests. Sequences of 16S rRNA gene showed 100% similarity with Xanthomonas campestris, X. arboricola, X. gardneri, X. cynarae strains (GenBank accession numbers: MW077507.1 and MW077508.1 for the isolates CRD19-206.3 and CRD19-206.4, respectively). However, the resulting phylogeny of multilocus sequence analysis (MLSA) of a concatenation of the housekeeping genes atpD, dnaK, and efp (Bui Thi Ngoc et al. 2010), by using neighbour-joining trees generated with 500 bootstrap replicates, grouped the two isolates with the X. hortorum pv. carotae M081 strain (Kimbrel et al. 2011) (GenBank accession numbers: MW161270 and MW161271 for atpD for the two isolates, respectively; MW161268 and MW161269 for dnaK; MW161272 and MW161273 for efp). A pairwise identity analysis revealed a 100% identity between all three isolates. Pathogenicity of the isolates was tested by spray inoculation (Christianson et al. 2015) with a bacterial suspension (108 CFU/ml) prepared in sterile distilled water at 3 to 4 true-leaf stage (six plants per isolate). Sterile distilled water was used as negative control. The inoculated plants were incubated in a growth chamber (25°C and 95% relative humidity [RH]) for 72 h, and then transferred to a greenhouse at 24 to 28°C and 65% RH. Characteristic leaf blight symptoms developed on inoculated carrot plants, while no symptoms were observed on the negative control plants 20 days after inoculation. The bacterium was re-isolated from symptomatic tissue and the identity confirmed through PCR analysis. Based on PCR, morphological and phenotypic tests, sequence analysis, and pathogenicity assays, the isolates were identified as X. hortorum pv. carotae. To our knowledge, this is the first report of bacterial leaf blight of carrot caused by X. hortorum pv. carotae in Spain, and the first molecular and pathological characterization. It is important to early detect this pathogen and take suitable measures to prevent its spread, since it could cause yield losses for a locally important crop such as carrot.


Plant Disease ◽  
2010 ◽  
Vol 94 (8) ◽  
pp. 1065-1065 ◽  
Author(s):  
W.-L. Deng ◽  
T.-C. Huang ◽  
Y.-C. Tsai

In November 2008, betelvines (Piper betle L., Piperaceae) exhibiting leaf blight symptoms were observed in central Taiwan. Infections resulted in a 30 to 70% loss of leaf yield in the investigated betel leaf-producing facilities. Symptoms began with small, necrotic, water-soaked spots that progressed to circular to irregularly shaped brown lesions, 5 to 10 mm in diameter, with chlorotic halos on leaves; some lesions started from the edge of leaves and later fused to form dried, necrotic margins. Bacteria-like streaming fluid was visible from the edges of freshly cut lesions at the junctions of chlorotic and necrotic leaf tissues when observed with a light microscope at ×100. When the streaming fluid was streaked onto King's medium B (3), a slow-growing, gram-negative, nonfluorescent bacterium was identified from the whitish colonies that consistently developed on the medium. Five bacterial isolates from three lesions were characterized with fatty acid methyl ester analysis (Agilent Technologies, Santa Clara, CA) and Sherlock Microbial Identification System (Microbial IDentification Inc., Newark, DE), and for each isolate, the bacterium was confirmed as Acidovorax avenae subsp. citrulli with a similarity index >0.70. In addition, the Biolog system (Biolog, Hayward, CA) and 16S ribosomal RNA sequence identity comparison were performed to confirm that the five betelvine-isolated bacteria were A. avenae subsp. citrulli based on a similarity of 0.54 with Biolog and 99% sequence identity for 16S rRNA gene. Koch's postulates were fulfilled by infiltrating a bacterial suspension of 3 × 105 CFU/ml into 40 leaves of four greenhouse-grown, disease-free, mature betelvine plants. After inoculation, plants were kept in a humidified greenhouse at 28°C to favor symptom development and symptoms similar to those observed in the greenhouse were evident at 7 days post inoculation (dpi) on all bacterium-infiltrated leaves. Control leaves infiltrated with distilled water remained symptomless. Bacteria showing morphological and biochemical similarities (2) to the ones used for inoculation were isolated from all of the inoculated betelvine leaves. In addition, a bacterial suspension at 3 × 108 CFU/ml was sprayed at the amount of 5 ml per plant onto 6 to 10 plants each of 4-week-old disease-free seedlings of watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai, cv. Empire No. 2), oriental sweet melon (Cucumis melo L. var. saccharinus Naudin, cv. Silver Beam), and waxgourd (Benincasa hispida (Thunb.) Cogn., cv. Cheerer) for bioassays, and the inoculated seedlings were enclosed in plastic bags for 36 h at 28°C. Water-soaked lesions were observed on leaves of watermelon and waxgourd at 2 dpi and on sweet melon at 4 dpi on all inoculated plants but not on distilled water-sprayed control plants, indicating that A. avenae subsp. citrulli strains from betelvine could also infect melon plants. A. avenae subsp. citrulli was previously identified as the causal agent of bacterial fruit blotch on melon and bitter gourd in Taiwan (1). To our knowledge, this is the first report that A. avenae subsp. citrulli can naturally infect betelvine, a noncucurbit crop, to elicit bacterial leaf blight disease. References: (1) A.-H. Cheng and T.-C. Huang. Plant Pathol. Bull. 7:216, 1998. (2) J. B. Jones et al. Page 121 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society, St. Paul, MN, 2001. (3) E. O. King et al. J. Lab. Clin. Med. 44:301, 1954.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1064-1064 ◽  
Author(s):  
I.-S. Myung ◽  
J. Y. Lee ◽  
H. L. Yoo ◽  
J. M. Wu ◽  
H.-S. Shim

In September 2011, bacterial leaf spot was observed on zinnia plants (Zinnia elegans L.) grown in a garden in Suwon, Korea. Leaf symptoms included angular lesions that were yellow or brown-to-reddish brown in the center. Bacterial isolates (BC3293 to BC3299) were recovered on trypticase soy agar from lesions surface-sterilized in 70% ethyl alcohol for 1 min. Pathogenicity of the isolates was confirmed by spray inoculation with a bacterial suspension (106 CFU/ml) prepared in sterile distilled water and applied to zinnia plants at the four- to five-leaf growth stage (two plants per isolate). Sterile distilled water was used as the negative control. The inoculated plants were incubated in a greenhouse at 26 to 30°C and 95% relative humidity. Characteristic leaf spot symptoms developed on inoculated zinnia plants 5 days after inoculation. No symptoms were observed on the negative control plants. The bacterium reisolated from the inoculated leaves was confirmed through gyrB gene sequence analysis (3). All isolates were gram-negative, aerobic rods, each with a single flagellum. Isolates were positive for catalase and negative for oxidase. The biochemical and physiological tests for differentiation of Xanthomonas were performed using methods described by Shaad et al. (2). The isolates were positive for mucoid growth on yeast extract-dextrose-calcium carbonate agar, growth at 35°C, hydrolysis of starch and esculin, protein digestion, acid production from arabitol, and utilization of glycerol and melibiose. Colonies were negative for ice nucleation, and alkaline in litmus milk. The gyrB gene (870 bp) and the 16S-23S rRNA internal transcribed spacer (ITS) regions (884 bp) were sequenced to aid in identification of the original field isolates using published PCR primer sets Xgyr1BF/Xgyr1BR (3) and A1/B1 (1), respectively. Sequence of the gyrB gene (GenBank Accession Nos. JQ665732 to JQ665738) from the zinnia field isolates shared 100% sequence identity with the reference strain of Xanthomonas campestris pv. zinniae (GenBank Accession No. EU285210), and the ITS sequences (GenBank Accession Nos. JQ665725 to JQ665731) had 99.9% sequence identity with X. campestris pv. zinnia XCZ-1 (GenBank Accession No. EF514223). On the basis of the pathogenicity assays, biochemical and physiological tests, and sequence analyses, the isolates were identified as X. campestris pv. zinniae. To our knowledge, this is the first report of bacterial leaf spot of zinnia caused by X. campestris pv. zinniae in Korea. The disease is expected to result in economic and aesthetic losses to plants in Korean landscapes. Thus, seed treatment with bactericides will be required to control the bacterial leaf spot of zinnia before planting. References: (1) T. Barry et al. The PCR Methods Appl. 1:51, 1991. (2) N. W. Schaad et al. Page 189 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. N. W. Schaad et al., eds. The American Phytopathological Society, St. Paul, MN, 2001. (3) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lin Yu ◽  
Changdeng Yang ◽  
Zhijuan Ji ◽  
Yuxiang Zeng ◽  
Yan Liang ◽  
...  

In autumn 2020, leaf blight was observed on rice (Oryza sativa L., variety Zhongzao39, Yongyou9, Yongyou12, Yongyou15, Yongyou18, Yongyou1540, Zhongzheyou8, Jiafengyou2, Xiangliangyou900 and Jiyou351) in the fields of 17 towns in Zhejiang and Jiangxi Provinces, China. The disease incidence was 45%-60%. Initially, water-soaked, linear, light brown lesions emerged in the upper blades of the leaves, and then spread down to leaf margins, which ultimately caused leaf curling and blight during the booting-harvest stage (Fig. S1). The disease symptoms were assumed to be caused by Xanthomonas oryzae pv. oryzae (Xoo), the pathogen of rice bacterial blight. 63 isolates were obtained from the collected diseased leaves as previously described (Hou et al. 2020). All isolates showed circular, smooth-margined, yellow colonies when cultured on peptone sugar agar (PSA) medium for 24h at 28℃. The cells were all gram-negative and rod-shaped with three to six peritrichous flagella; positive for catalase, indole, glucose fermentation and citrate utilization, while negative for oxidase, alkaline, phenylalanine deaminase, urease, and nitrate reductase reactions. 16S rRNA gene sequence analysis from the 6 isolates (FY43, JH31, JH99, TZ20, TZ39 and TZ68) revealed that the amplified fragments shared 98% similarity with Pantoea ananatis type strain LMG 2665T (GenBank JFZU01) (Table S3). To further verify P. ananatis identity of these isolates, fragments of three housekeeping genes including gyrB, leuS and rpoB from the 6 isolates were amplified and sequenced, which showed highest homology to LMG 2665T with a sequence similarity of 95%-100% (Table S3). Primers (Brady et al. 2008) and GenBank accession numbers of gene sequences from the 6 isolates are listed in Table S1 and Table S2. Phylogenetic analysis of gyrB, leuS and rpoB concatenated sequences indicated that the 6 isolates were clustered in a stable branch with P. ananatis (Fig. S2). Based on the above morphological, physiological, biochemical and molecular data, the isolates are identified as P. ananatis. For pathogenicity tests, bacterial suspension at 108 CFU/mL was inoculated into flag leaves of rice (cv. Zhongzao39) at the late booting stage using clipping method. Water was used as a negative control. The clipped leaves displayed water-soaked lesions at 3 to 5 days after inoculation (DAI); then the lesion spread downward and turned light brown. At about 14 DAI, blight was shown with similar symptoms to those samples collected from the rice field of Zhejiang and Jiangxi provinces (Fig. S1). In contrast, the control plants remained healthy and symptomless. The same P. ananatis was re-isolated in the inoculated rice plants, fulfilling Koch’s postulates. In the past decade, P. ananatis has been reported to cause grain discoloration in Hangzhou, China (Yan et al. 2010) and induce leaf blight as a companion of Enterobacter asburiae in Sichuan province, China (Xue et al. 2020). Nevertheless, to the best of our knowledge, this is the first report of P. ananatis as the causative agent of rice leaf blight in southeast China. This study raises the alarm that the emerging rice bacterial leaf blight in southeast China might be caused by a new pathogen P. ananatis, instead of Xoo as traditionally assumed. Further, the differences of occurrence, spread and control between two rice bacterial leaf blight diseases caused by P. ananatis and Xoo, respectively need to be determined in the future.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 276-276
Author(s):  
Sruti Bajpai ◽  
Pushp Sheel Shukla ◽  
Mohd Adil ◽  
Samuel Asiedu ◽  
Kris Pruski ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2942
Author(s):  
Ye Zhang ◽  
Lei Zheng ◽  
Hanzhong Gao ◽  
Qingqing Song ◽  
Jianwei Gao

2018 ◽  
Vol 7 (2) ◽  
pp. 85-88 ◽  
Author(s):  
Salman Ghuffar ◽  
Gulshan Irshad ◽  
Fengyan Zhai ◽  
Asif Aziz ◽  
Hafiz M. Asadullah M. Asadullah ◽  
...  

Grapes (Vitis vinifera) are the important fruit crop in Pakistan, mostly cultivated for edible purpose. In September 2016, unusual fruit rot symptoms were observed 3-5 days after harvesting on grapes cv. Kishmishi in post-harvest packing houses in Jehlum district (32°56'22.3"N 73°43'31.4"E) of Punjab province. To determine the disease incidence, a total of 10 boxes of grapes from 5 different locations were selected randomly. Each box contained average 12 bunches and 30 bunches out of 120 inspected bunches displayed typical symptoms of the disease. The initial Symptoms were small, round, water-soaked lesions that rapidly developed into soft, white to light pink mycelium near the centre of infected fruits (Figure 1). A total of 186 symptomatic berries were surface sterilized with 1% sodium hypochlorite, rinsed three times with sterile distilled water and dried by placing on filter paper for 45 sec. Sterilized tissues (approximately 4 mm3) were excised and incubated on potato dextrose agar (PDA) medium at 25 ± 4°C. One week after incubation, colonies with abundant aerial mycelium were initially white, cottony and turned to violet and dark purple with age (Figure 2). A total of 25 isolates were examined morphologically. Macroconidia were slender, thin-walled, 3 to 5 septate, curved apical cell, with 20.9 to 45.2 × 3.2 to 7.1 μm and Microconidia were thin-walled, aseptate, club-shaped with 4.5 to 11.2 × 2.3 to 4.1 μm (Figure 3). These characteristics best fit for the description of Fusarium proliferatum (Leslie and Summerell, 2006). Portions of the internal transcribed spacer (ITS) region were sequenced (White et al., 1990). Sequences of two isolates Fus 07 and Fus 09 (GenBank Accessions; MH444366 and MH464139) showed 100% identity to the corresponding gene sequences of Fusarium proliferatum (GenBank Accessions; MH368119, MF033172 and KU939071) (Figure 4). Pathogenicity test was performed by inoculation with 50-μl conidial suspension (1 × 106conidia/ml) of two isolates onto three non-wounded and four wounded asymptomatic grapes berries. Sterile distilled water was used for a negative control (Figure 5). The experiment was conducted twice and berries were incubated at 25 ± 2°C in sterile moisture chambers (Ghuffar et al., 2018). White to light pink mycelium in appearance with the original symptoms were observed on both wounded and non-wounded inoculated berries after 3 days, whereas no symptoms were observed on the negative control. The morphology of the fungus that was re-isolated from each of the inoculated berries was identical to that of the original cultures. Fusarium proliferatum, one of the destructive species, causes diseases like foot-rot of corn (Farr et al., 1990), root rot of soybean (Díaz Arias et al., 2011), bakanae of rice (Zainudin et al., 2008), wilt of date palm (Khudhair et al., 2014), tomato wilt (Chehri, 2016) and tomato fruit rot (Murad et al., 2016). To our knowledge, this is the first report of Fusarium proliferatum causing fruit rot of grapes in Pakistan, where the disease poses a significant threat to the sustainability of this major fruit crop.


Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1690-1690 ◽  
Author(s):  
Y. Ibrahim ◽  
M. Al-Saleh

In the summer of 2009 and 2010, 18 sweet pepper fruit with blister-like, raised, rough lesions were collected from four greenhouses (total of 0.1 ha) in the Al-Kharj region of Saudi Arabia. All samples were collected from commercial crops of the sweet pepper cv. California Wonder. Disease incidence was ≤5%. Isolations were made from all diseased fruits. A small piece (3 mm2) of symptomatic tissue from pepper fruit was placed in a sterile mortar and macerated in sterile distilled water with a pestle. A loopful of bacterial suspension from each sample was streaked onto Tween B agar medium (3). Plates were incubated at 28°C for 48 h. Single yellow, circular, butyrous, shiny colonies were picked from the plates and transferred to nutrient agar plates containing 5% D+ glucose agar (NGA). Gram-negative, rod-shaped bacteria were consistently isolated from the fruit and 10 of the isolates were identified as Xanthomonas campestris pv. vesicatoria on the basis of morphological, physiological, and biochemical tests (1,2). The isolates were oxidase positive and levan negative, arginine-dihydrolase positive, and did not macerate potato discs. The isolates were also non-fluorescent, grew at 37 and 4°C but not at 40°C, did not liquefy gelatine or starch, but did produce H2S. The identity of the 10 bacterial strains was confirmed by PCR assay using primers RST65 and RST69 (4). Four-week old pepper plants (cv. California Wonder) were inoculated by spraying five potted plants with each isolate using a bacterial suspension (108 CFU/ml). Sterile distilled water was sprayed on an additional five plants as a negative control treatment. The bacterial isolates caused necrotic lesions, each with a yellow halo, on leaves of inoculated plants. Bacteria reisolated from the necrotic lesions using the technique previously described were identical to the original strains according to the morphological, cultural, and biochemical tests described above. Negative control plants inoculated with sterile distilled water did not show symptoms and no bacterial colonies were recovered from them. To our knowledge, this is the first report of bacterial spot on pepper fruits in Saudi Arabia. References: (2) R. F. Bradbury. Genus II Xanthomonas Dowson 1939. In: Bergey's Manual of Systematic Bacteriology, Vol. 1, Krieg, R., Holt, J. G. (Eds.), Williams & Wilkins Co., Baltimore, MD, 1987. (3) R. A. Lelliott and D. E. Stead. Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications, Oxford, UK. (1) R. G. McGuire et al. Plant Dis 70:887, 1986. (4) A. Obradovic et al. Eur. J. Plant Pathol. 110:285, 2004.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 838-838 ◽  
Author(s):  
V. Gupta ◽  
V. K. Razdan ◽  
D. John ◽  
B. C. Sharma

In India, rice (Oryza sativa L.) plays a major role in national food security, with total production of 102.75 million t, harvested from 44 million ha during 2011 (1). Weeds are one of the major causes of losses in rice. Cyperus iria, locally known as chatriwala dela (rice flat sedge), is an annual weed in the Cyperaceae that can reach 50 to 60 cm tall. A leaf blight of C. iria was observed during August 2010 in a 20-ha rice field (cv. Basmati 370) at the University Research Farm, Chatha, Jammu (32° 43′ N, 74° 54′ E). Symptomatic plants were scattered randomly in the field and had water-soaked spots on the upper leaf surfaces initially, which turned brown after 4 days and developed a yellow halo, resulting in a blighted appearance. The diseased leaves shriveled and infected plants died. Infected C. iria leaf pieces with adjacent healthy tissue were collected, surface-sterilized in 0.1% mercuric chloride for 20 s, then rinsed three times in sterilized distilled water. The pieces were plated onto potato dextrose agar (PDA) and incubated at 27 ± 1°C for 4 days. A pure fungal culture was obtained by single-spore technique on 2% water agar and maintained on PDA at 10°C. The fungus initially produced white mycelium that became brown with age. Dark brown spots or flecks of pigment formed in the agar. Macroconidia were long and slender, with tapered apical cells that were elongated or even whip-like. Basal cells of macroconidia were prominent, foot shaped, and elongated. Macroconidia were 39.55 to 56.74 × 3.75 to 4.5 μm with 3 to 5 septa. Conidiophores were compact, penicillately branched, and arose from lateral branches which initially were one-celled and bore 2 to 4 phialides at the apex. Chlamydospores were intercalary, solitary, in chains or in knots, globose, and 7 to 9 μm in diameter. On the basis of morphological characteristics (2), the fungus was identified as Fusarium equiseti (Corda) Sacc. and deposited in the Indian Type Culture Collection, New Delhi (8424.11). The ITS (internal transcribed spacer) region of rDNA was amplified by PCR with primers ITS1/ITS2 and sequenced. BLASTn analysis of the sequence showed 100% homology with the ITS sequence of F. equiseti in the NCBI database (JN596252.1), and the sequence was deposited in GenBank (KC434458). To confirm pathogenicity of the F. equiseti isolate, 10 seeds of C. iria were planted in five clay pots (each 38 cm in diameter) filled with sterilized soil. Three seedlings were used for the experiment and the remaining seedlings removed from each pot. A total of 15 seedlings (5 pots × 3 seedlings per pot) at the two-leaf stage were spray-inoculated with a 50-ml conidial suspension of the isolate (105 cfu/ml) using a hand atomizer. The control treatment included three seedlings treated similarly with sterile distilled water. The spore suspension was prepared in potato dextrose broth using a culture of the fungus incubated for 10 days and then homogenized at 140 rpm. Tween 20 (1%) was added to the spore suspension. Small spots developed 4 days after inoculation, and the lesions then coalesced into large necrotic areas, resulting in leaf blight 10 days after inoculation. F. equiseti was reisolated from inoculated leaves using the method described above, whereas no fungus was reisolated from control plants, fulfilling Koch's postulates. The isolated fungus displayed the same morphological and cultural features as the original isolate. F. equiseti has been reported to infect Echinochloa spp. in Iran (3), but to our knowledge, this is the first report of F. equiseti infecting C. iria in India. Thus, F. equiseti represents a potential biocontrol agent for managing C. iria in rice fields. References: (1) Anonymous. Direct. Rice Res. Newslett. 10:2, 2012. (2) C. Booth. The Genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, England, p. 157, 1971. (3) M. R. S. Motlagh. Austral. J. Crop Sci. 4:457, 2010.


Sign in / Sign up

Export Citation Format

Share Document