scholarly journals First Report of Leaf Spot Caused by Colletotrichum fructicola and C. siamense on Zizyphus mauritiana in Guangxi, China

Plant Disease ◽  
2020 ◽  
Author(s):  
Juan Shu ◽  
Tangxun Guo ◽  
Qili Li ◽  
Lihua Tang ◽  
Suiping Huang ◽  
...  

Zizyphus mauritiana Lam. is an important tropical fruit tree and has significant economic value. It is widely planted in Hainan, Guangdong, Guangxi and Fujian provinces in China (Yang et al. 2017). In March 2019, leaf spot was observed on leaves of Z. mauritiana at Bagui fields in Nanning, Guangxi, China, with incidence exceeding 50%. Symptomatic leaves developed a yellow to tan-brown sunken lesion and finally abscised. To isolate the pathogen causing the symptoms, small pieces (5 × 5 mm) of infected leaves were surface sterilized by exposure to 75% ethanol for 10 sec, 1% sodium hypochlorite for 1 min and rinsed three times in sterile water. Fifty pieces were isolated, surface sterilized, and pieces were plated onto potato dextrose agar (PDA) and grown at 28°C for 7 days. The isolation rate of Colletotrichum species was 100%. Three representative isolates (DQZ3-1, DQZ3-2 and DQZ3-3) were selected for further study. Mycelia were greyish-white for all three isolates, with isolate DQZ3-1 also appearing dark green in the center of the colony. Conidia were elliptical, aseptate and hyaline, with sizes of 13.4 ± 0.12 µm × 5.7 ± 0.1 µm, 14.8 ± 0.1 µm × 5.8 ± 0.1 µm and 15.1 ± 0.1 µm × 5.5 ± 0.1 µm for DQZ3-1, DQZ3-2 and DQZ3-3, respectively. Genomic DNA was extracted using the DNAsecure Plant Kit [Tiangen Biotech (Beijing) Co., Ltd] and the internal transcribed spacer (ITS), partial actin (ACT), calmodulin (CAL), chitin synthase (CHS-1), beta-tubulin (TUB2), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were sequenced (Weir et al. 2012). Phylogenetic analysis of the three isolates was performed with MEGA-X (Version 10.0) based on sequences of multiple loci (ITS, ACT, CAL, CHS-1, TUB2 and GAPDH) using Maximum Likelihood analysis. Isolate DQZ3-1 was identified as C. fructicola, and the other two isolates, DQZ3-2 and DQZ3-3, were identified as C. siamense (accessions MT039396 to MT039410, for ACT, CAL, CHS-1, GAPDH and TUB2 of DQZ3-1, DQZ3-2 and DQZ3-3; MT041651 to MT041653 for ITS of DQZ3-1, DQZ3-2 and DQZ3-3). Pathogenicity tests were conducted on 1-year-old plants. Young, healthy leaves were artificially wounded by gently scratching with a sterile needle and 10 µl droplets of conidial suspension (106 spores/ml) applied per wound site for each isolate. Some wounded leaves were inoculated with 10 µl droplets of water as controls. Each isolate was inoculated onto three plants, with 15 leaves at least for each plant, same as controls. All inoculated plants were sprayed with water and covered with plastic bags to maintain high humidity. Symptomatic lesions were observed on the inoculated leaves after 7 days at 28°C, whereas no symptoms were observed on the control leaves. To fulfill Koch’s postulates, fungi were re-isolated from 50 symptomatic leaf pieces and fungi re-isolated from each leaf piece were morphologically identical to the inoculated isolates, for a 100% isolation frequency. To our knowledge, this is the first report of leaf spot caused by C. fructicola and C. siamense on Z. mauritiana worldwide. This research may accelerate the development of future epidemiological studies and management strategies for anthracnose caused by C. fructicola and C. siamense on Z. mauritiana.

Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1583-1583 ◽  
Author(s):  
D. D. M. Bassimba ◽  
J. L. Mira ◽  
A. Vicent

The production of spinach (Spinacia oleracea L.) in Spain has increased 50% since 2009, mainly due to the commercialization of fresh-cut spinach leaves packaged in modified atmosphere containers. In October 2012, light brown leaf spots 1 to 2 cm in diameter with dark concentric rings were observed in a commercial spinach production area in Valencia Province, Spain. The initial outbreak comprised an area of about 3 ha with a 20% disease incidence. Symptomatic leaves from spinach cv. Apollo were collected in the affected area and were surface disinfected with 0.5% NaOCl for 2 min. Small fragments from lesions were placed onto potato dextrose agar (PDA) amended with 0.5 g streptomycin sulfate/liter. Fungal colonies developed after 3 days of incubation at 23°C from about 90% of the infected tissues plated. Isolates were transferred to oatmeal agar (OA) (1) and water agar (WA) amended with autoclaved pea seeds (2). Plates were incubated for 30 days at 24°C with 13 h of fluorescent light and 11 h of dark for morphological examination. Colonies were olivaceous grey in OA and pycnidia developed in WA were globose to subglobose, olivaceous black, and 100 to 200 μm in diameter. Conidia were globose to ellipsoidal, hyaline, aseptate, and 3.8 to 7.7 × 2.4 to 3.9 μm. Swollen cells were observed. Isolates showed a positive reaction to NaOH (1). Partial 18S, ITS1, 5.8S, ITS2, and partial 28S ribosomal RNA (rRNA) regions were amplified using the primers ITS1 and ITS4 (4) and sequenced from DNA extracted from the isolate designated as IVIA-V004 (GenBank Accession No. KF321782). The sequence had 100% identity (e-value 0.0) with that of Pleospora betae (Berl.) Nevod. (syn. Phoma betae A.B. Frank) representative strain CBS 523.66 (1). Pathogenicity tests were performed twice by inoculating 4-month-old plants of spinach cv. Apollo, table beet (Beta vulgaris L.) cv. Detroit, and Swiss chard (B. vulgaris subsp. cicla) cv. Verde de Penca Blanca. Plants were inoculated by spraying a conidial suspension of isolate IVIA-V004 (10 ml/plant, 105 conidia/ml water) using a manual pressure sprayer. Plants were immediately covered with black plastic bags and incubated in a growth chamber at 23°C. In each experiment, four plants of each host were inoculated with the fungus and four additional plants sprayed with sterile distilled water were used as controls. Plastic bags were removed after 48 h and leaf spots similar to those observed in affected spinach plants in the field were visible on all spinach, table beets, and Swiss chard plants 3 to 5 days after inoculation. No symptoms were observed on control plants. Fungal colonies morphologically identified as P. betae were re-isolated from leaf lesions on inoculated plants, but not from asymptomatic leaves of control plants. To our knowledge, this is the first report of leaf spot caused by P. betae on spinach in Spain, where it was previously described affecting sugar beet (3). The disease reduces the quality of spinach leaves and proper control measures should be implemented. References: (1) G. H. Boerema et al. Phoma Identification Manual, Differentiation of Specific and Infra-Specific Taxa in Culture. CABI Publishing, Wallingford, UK, 2004. (2) O. D. Dhingra and J. B. Sinclair. Basic Plant Pathology Methods, 2nd ed. CRC Press, Boca Raton, FL, 1995. (3) P. Melgarejo et al. Patógenos de Plantas Descritos en España. MARM-SEF, Madrid, 2010. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Manlin Xu ◽  
Xia Zhang ◽  
Jing Yu ◽  
zhiqing Guo ◽  
Ying Li ◽  
...  

Peanut (Arachis hypogaea L.) is one of the most economically important crops as an important source of edible oil and protein. In August 2020, circular to oval-shaped brown leaf spots (2-6 mm in diameter) with well-defined borders surrounded by a yellow margin were observed on peanut plant leaves in Laixi City, Shandong Province, China. Symptomatic plants randomly distributed in the field, the incidence was approximately 5%. Leave samples were collected consisted of diseased tissue and the adjacent healthy tissue. The samples were dipped in a 70% (v/v) ethanol solution for 30 s and then soaked in a 0.1% (w/v) mercuric chloride solution for 60 s. The surface-sterilized tissues were then rinsed three times with sterile distilled water, dried and placed on Czapek Dox agar supplemented with 100 μg/ml of chloramphenicol. The cultures were incubated in darkness at 25 °C for 3–5 days. Fungal colonies were initially white and radial, turning to orange-brown in color, with abundant aerial mycelia. Macroconidia were abundant, 4 to 7 septate, with a dorsiventral curvature, and were 3.3–4.5 × 18.5–38.1 μm (n=100) in size; microconidia were absent; chlamydospores were produced in chains or clumps, ellipsoidal to subglobose, and thick walled. The morphological characteristics of the conidia were consistent with those of Fusarium spp. To identify the fungus, an EasyPure Genomic DNA Kit (TransGEN, Beijing, China) was used to extract the total genomic DNA from mycelia. The internal transcribed spacer region (ITS rDNA) and the translation elongation factor 1-α gene (TEF1) were amplified with primers ITS1/ITS4 (White et al. 1990) and EF1/EF2 (O’Donnell et al. 1998), respectively. Based on BLAST analysis, sequences of ITS (MT928727) and TEF1 (MT952337) showed 99.64% and 100% similarity to the ITS (MT939248.1), TEF1 (GQ505636.1) of F. ipomoeae isolates. Sequence analysis confirmed that the fungus isolated from the infected peanut was F. ipomoeae (Xia et al. 2019). The pathogenicity of the fungus was tested in the greenhouse. Twenty two-week-old peanut seedlings (cv. Huayu20) grown in 20-cm pots (containing autoclaved soil) were sprayed with a conidial suspension (105 ml−1) from a 15-day-old culture. Control plants were sprayed with distilled water. The experiment was conducted as a randomized complete block design, and placed at 25 °C under a 12-h photoperiod with 90% humidity. Symptoms similar to those in the field were observed on leaves treated with the conidial suspension ten days after inoculation, but not on control plants. F. ipomoeae was re-isolated from symptomatic leaves but not from the control plants. Reisolation of F. ipomoeae from inoculated plants fulfilled Koch's postulates. To our knowledge, this is the first report of F. ipomoeae causing peanut leaf spot in China. Our report indicates the potential spread of this pathogen in China and a systematic survey is required to develop effective disease management strategies.


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 653-653 ◽  
Author(s):  
G. A. Bardas ◽  
G. T. Tziros ◽  
K. Tzavella-Klonari

Common bean (Phaseolus vulgaris L.) is cultivated extensively in Greece for dry and fresh bean production. During 2005 and 2006, a disease with typical blight symptoms was observed occasionally on dark red kidney, brown kidney, and black bean plants in most bean-producing areas of Greece. It rarely was destructive unless the crop had been weakened by some unfavorable environmental conditions. Infected leaves had brown-to-black lesions that developed concentric zones 10 to 30 mm in diameter and also contained small, black pycnidia. Concentric dark gray-to-black lesions also appeared on branches, stems, nodes, and pods. Infected seeds turned brown to black. Plants sometimes showed defoliation and pod drop. The fungus was consistently isolated on potato dextrose agar from diseased leaves and pods and identified as Phoma exigua var. exigua Sutton and Waterstone on the basis of morphological characteristics of conidia and pycnidia (1,2). Spores were massed in pycnidia from which they were forced in long, pink tendrils under moist weather conditions. Conidia were cylindrical to oval, allantoid, hyaline, pale yellow to brown, usually one-celled, and 2 to 3 × 5 to 10 μm. To satisfy Koch's postulates, a conidial suspension (1 × 106 conidia per ml) of the fungus was sprayed onto leaves and stems of bean seedlings (first-leaf stage) (cv. Zargana Hrisoupolis). Both inoculated and control seedlings (inoculated with sterile water) were covered with plastic bags for 72 h in a greenhouse at 23°C. Inoculated plants showed characteristic symptoms of Ascochyta leaf spot 12 to 15 days after inoculation. The fungus was reisolated from lesions that developed on the leaves and stems of all inoculated plants. The pathogen is present worldwide on bean. To our knowledge, this is the first report of P. exigua var. exigua on common bean in Greece. References: (1) D. F. Farr et al. Fungal Databases. Systematic Botany and Mycology Laboratory. Online publication. ARS, USDA, 2007. (2) B. C. Sutton and J. M. Waterstone. Ascochyta phaseolorum. No. 81 in: Descriptions of Pathogenic Fungi and Bacteria. CMI/AAB, Kew, Surrey, England, 1966.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1443-1443
Author(s):  
J. H. Park ◽  
S. E. Cho ◽  
C. K. Lee ◽  
S. H. Lee ◽  
H. D. Shin

Dictamnus dasycarpus Turcz, known as densefruit pittany, is a perennial herbal plant belonging to the Rutaceae. In Oriental medicine, this plant is used for treatment of various ailments (4). Since the white and purple striped flowers and glossy leaves are of aesthetic value, the plant is popular in gardens throughout Korea. In July 2012, a leaf spot was observed on hundreds of D. dasycarpus with nearly 100% incidence in a garden in Gapyeong County, Korea. Lesions on leaves reaching up to 20 mm in diameter were circular to irregular, brown to dark brown, then becoming zonate with age, and finally fading to grayish brown in the center with a reddish brown margin. The disease caused premature defoliation and reduced plant vigor as well as aesthetic value. In June 2014, the same symptoms were found on D. dasycarpus in a nursery in Jinju City, Korea. Representative samples were deposited in the Korea University Herbarium (KUS). Pycnidia on lesions were epiphyllous, immersed or semi-immersed in host tissue, light brown to olive brown, and 90 to 210 μm in diameter. Ostioles were 15 to 30 μm wide and surrounded by a ring of darker cells. Conidia were hyaline, smooth, ellipsoidal to nearly reniform, straight to mildly curved, aseptate or rarely medianly 1-septate with age, 5.5 to 9.6 × 1.8 to 3.6 μm, and contained small oil drops. These characteristics were consistent with the previous descriptions of Phoma dictamnicola Boerema, Gruyter & Noordel. (1,2). A monoconidial isolate was cultured on potato dextrose agar plates and deposited in the Korea Agricultural Culture Collection (Accession No. KACC46948). Morphological identification of the fungus was confirmed by molecular data. Genomic DNA was extracted using a DNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1/ITS4 primers and sequenced. The resulting sequence of 505 bp was deposited in GenBank (Accession No. KM047023). A BLAST search showed that the ITS sequence shared >99% similarity with that of P. dictamnicola (GU237877). For the pathogenicity tests, inoculum was prepared by harvesting conidia from 30-day-old cultures of KACC46948 and a conidial suspension (2 × 106 conidia/ml) was sprayed onto leaves of five healthy seedlings. Five seedlings were sprayed with sterile distilled water, serving as controls. The plants were covered with transparent plastic bags for 48 h in a 25°C glasshouse with a 12-h photoperiod. After 10 days, typical leaf spot symptoms started to develop on the leaves of the inoculated plants. The fungus, P. dictamnicola, was re-isolated from those lesions, confirming Koch's postulates. No symptoms were observed on control plants. Previously, Phoma leaf spot on Dictamnus spp. has been reported in the Netherlands and North America (3) and recently in China (1). To our knowledge, this is the first report of leaf spot on D. dasycarpus caused by P. dictamnicola in Korea. Our observations suggest that low humidity with good ventilation as well as removal of infected leaves and plant debris might be main strategies for preventing this disease. References: (1) Q. Bai et al. Plant Dis. 95:771, 2011. (2) G. H. Boerema et al. Phoma Identification Manual: Differentiation of Specific and Infra-Specific Taxa in Culture. CABI Publishing. Wallingford, UK, 2004. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, USDA ARS, Retrieved June 19, 2014. (4) J. L. Yang et al. Planta Med. 77:271, 2011.


Plant Disease ◽  
2007 ◽  
Vol 91 (12) ◽  
pp. 1684-1684 ◽  
Author(s):  
Y. Ko ◽  
K. S. Yao ◽  
C. Y. Chen ◽  
C. H. Lin

Mango (Mangifera indica L.; family Anacardiaceae) is one of the world's most important fruit crops and is widely grown in tropical and subtropical regions. Since 2001, a leaf spot disease was found in mango orchards of Taiwan. Now, the disease was observed throughout (approximately 21,000 ha) Taiwan in moderate to severe form, thus affecting the general health of mango trees and orchards. Initial symptoms were small, yellow-to-brown spots on leaves. Later, the irregularly shaped spots, ranging from a few millimeters to a few centimeters in diameter, turned white to gray and coalesced to form larger gray patches. Lesions had slightly raised dark margins. On mature lesions, numerous black acervuli, measuring 290 to 328 μm in diameter, developed on the gray necrotic areas. Single conidial isolates of the fungus were identified morphologically as Pestalotiopsis mangiferae (Henn.) Steyaert (2,3) and were consistently isolated from the diseased mango leaves on acidified (0.06% lactic acid) potato dextrose agar (PDA) medium incubated at 25 ± 1°C. Initially, the fungus grew (3 mm per day) on PDA as a white, chalky colony that subsequently turned gray after 2 weeks. Acervuli developed in culture after continuous exposure to light for 9 to 12 days at 20 to 30°C. Abundant conidia oozed from the acervulus as a creamy mass. The conidia (17.6 to 25.4 μm long and 4.8 to 7.1 μm wide) were fusiform and usually straight to slightly curved with four septa. Three median cells were olivaceous and larger than the hyaline apical and basal cells. The apical cells bore three (rarely four) cylindrical appendages. Pathogenicity tests were conducted with either 3-day-old mycelial discs or conidial suspension (105 conidia per ml) obtained from 8- to 10-day-old cultures. Four leaves on each of 10 trees were inoculated. Before inoculation, the leaves were washed with a mild detergent, rinsed with tap water, and then surface sterilized with 70% ethanol. Leaves were wounded with a needle and exposed to either a 5-mm mycelial disc or 0.2 ml of the spore suspension. The inoculated areas were wrapped with cotton pads saturated with sterile water and the leaves were covered with polyethylene bags for 3 days to maintain high relative humidity. Wounded leaves inoculated with PDA discs alone served as controls. The symptoms described above were observed on all inoculated leaves, whereas uninoculated leaves remained completely free from symptoms. Reisolation from the inoculated leaves consistently yielded P. mangiferae, thus fulfilling Koch's postulates. Gray leaf spot is a common disease of mangos in the tropics and is widely distributed in Africa and Asia (1–3); however, to our knowledge, this is the first report of gray leaf spot disease affecting mango in Taiwan. References: (1) T. K. Lim and K. C. Khoo. Diseases and Disorders of Mango in Malaysia. Tropical Press. Malaysia, 1985. (2) J. E. M. Mordue. No. 676 in: CMI Descriptions of Pathogenic Fungi and Bacteria. Surrey, England, 1980. (3) R. C. Ploetz et al. Compendium of Tropical Fruit Diseases. The American Phytopathological Society. St. Paul, MN, 1994.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chenxu Li ◽  
Peng Cao ◽  
Chuanjiao Du ◽  
Xi Xu ◽  
Wensheng Xiang ◽  
...  

Panicle Hydrangea (Hydrangea paniculate) is an ornamental flowering plant native to China and Japan. In August 2019, leaf spot symptoms with about 30% disease incidence were observed on panicle hydrangea in two grower fields (about 0.1 ha in total) of Northeast Agriculture University, China (126.72°E, 45.74°N). Symptoms initially appeared on the lower and older leaves and showed small subcircular brown spots with dark-brown edges on both sides. As the disease progressed, the necrotic spots enlarged, became irregular, coalesced, and the infected leaf blighted in approximately 2 weeks. Panicle hydrangea leaf samples (n=15) from different plants that showed spot symptoms were collected and surface sterilized with 70% ethanol for 10 s, followed by 0.5% NaClO treatment for 4 min, and rinsed in sterile water 3 times. Thereafter, leaf samples were placed on potato dextrose agar (PDA) and incubated at 25°C for 7 days. Fifteen hyphal-tipped pure cultures were obtained. Colonies growing on PDA for 7 days were olive green to dark green, exhibited a velvet-like texture and sometimes were radially furrowed and wrinkled. Margins varied from white gray to dark green without prominent exudates. The back of the plate showed dark green to black. Conidiophores were up to 180 to 600 µm long, 2.8 to 4.5 µm wide (n=50), subcylindrical-filiform, straight, septate, and unbranched or rarely branched. Ramoconidia were 0 to 1 septate, cylindrical to clavate, smooth-walled, 8 to 22 μm long (n=50). Conidia were single-celled, lemon-shaped, smooth-walled and 2.0 to 5.0 µm (diameter) (n=50). To confirm the identity, three genomic DNA regions, internal transcribed spacer (ITS), partial translation elongation factor-1 alpha (EF), and actin (ACT) of the representative isolate BAI-1 were amplified with primer pairs ITS1/4, EF1-728F/986R, and ACT-512F/783R, respectively (Bensch et al. 2012; Jo et al. 2018). DNA sequences of the isolate from ITS, EF, and ACT showed 99.81% (514/515 bp), 99.10% (219/221 bp), and 99.54% (216/217 bp) nucleotide identity with those of C. tenuissimum CBS 125995, respectively (GenBank accession nos. HM148197, HM148442, and HM148687). The sequences of isolate BAI-1 were deposited in GenBank (accession nos. MW045455, MW052465, and MW052466). To fulfill Koch’s postulates, five healthy 2-year-old panicle hydrangea plants grown in pots were surface sterilized with 70% ethanol, washed twice with sterile distilled water, and sprayed with a conidial suspension of strain BAI-1 (adjusted to 1×106 conidia/ml using a hemocytometer), maintained in a greenhouse at 25°C and 85% relative humidity. Five plants sprayed with sterilized water served as controls. The inoculated plants showed leaf spot symptoms that were similar to those previously observed in the fields after 7 days, whereas control leaves remained healthy. The fungus was reisolated from symptomatic leaves and its identity was confirmed by morphological and molecular method. These experiments were repeated twice. So far, C. tenuissimum was reported to cause leaf spot of alfalfa (Han et al. 2019) and castor (Liu et al. 2019). To our knowledge, this is the first report of leaf spot disease in panicle hydrangea caused by C. tenuissimum in China. Leaf spot has a negative effect on the aesthetic value of panicle hydrangea, and this report will assist with monitoring distribution of the disease as well as developing management recommendations.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 204-204
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Cornus sericea (synonym C. stolonifera), family Cornaceae, is becoming widely used in Italy as ground cover in parks and gardens. In spring 2001, severe outbreaks of a previously unknown disease were observed in several gardens located in northern Italy (Biella Province). Infected leaves displayed small, circular, angular, or irregular necrotic lesions measuring 1 to 3 mm in diameter. Lesions were olivaceous to dark brown with a distinct reddish-to-black margin and surrounded by a chlorotic halo. Lesions eventually coalesced. Under favorable conditions, infected leaves become heavily spotted, dulling their appearance; severe infections resulted in premature defoliation. Pycnidia occurred on diseased leaves, and a fungus identified as Septoria cornicola (1) was consistently isolated on potato dextrose agar (PDA). Dark mycelium grew slowly on PDA and produced abundant pycnidia and conidia. Conidia were holoblastic, hyaline, 2 to 6 septate, 22 to 48 µm (average 35) × 2.2 to 3.6 µm (average 2.5). Pathogenicity tests were performed by inoculating leaves of healthy plants of C. sericea (cv. Flaviramea) with a conidial suspension (1 × 106 CFU/ml). Noninoculated plants served as controls. Plants were covered for 72 h with plastic bags and maintained in a growth chamber at 20°C. The first lesions developed on leaves of inoculated plants after 15 days. From such lesions, S. cornicola was consistently reisolated. No symptoms occurred on control plants. The presence of S. cornicola on C. sericea cv. Flaviramea has been reported in the United States (2) and was observed in 1905 in northeastern Italy on Cornus sanguinea (1), but to our knowledge, this is the first report of septoria leaf spot on C. sericea in Italy. References: (1) D. F. Farr. Mycologia, 83:611, 1991. (2) D. Neely and D. S. Nolte. J. Arboric. 15:263, 1989.


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1151-1151 ◽  
Author(s):  
D. K. Pedersen ◽  
R. T. Kane ◽  
H. T. Wilkinson

Each year from 1991 to 1999, a disease matching the description of gray leaf spot (1) was observed in the central and north central regions of Illinois. Disease severity was low (<10% blight) from 1991 to 1994 and 1999 and was severe (>50% blight in some areas) from 1995 to 1998. The disease was observed on Lolium perenne (perennial ryegrass) golf course fairways and sports fields. Isolations of Pyricularia grisea were made from L. perenne collected from golf courses in Bloomington, Decatur, Kankakee, Pekin, Urbana, and Moline, IL. All isolates were collected from surface-sterilized, symptomatic leaves. Cultures were maintained on one-fifth strength potato-dextrose agar (PDA) and induced to sporulate on full-strength oatmeal agar. All isolates in culture displayed vegetative and conidial characteristics similar to those previously described for P. grisea (1). Twenty-five different L. perenne germ plasms were inoculated with isolate WF9826 (Kankakee) using a suspension of 1 × 105 conidia per milliliter. The 4-week-old lawns (100 plants per 3-cm-diameter cone-tainer) of each ryegrass germ plasm were inoculated by spraying foliage with the conidial suspension until runoff. Inoculated and uninoculated lawns were enclosed in plastic bags and placed in an incubator (16 h light; 28°C) for 7 days. Disease severity was rated using a scale of 0 to 10 (10 = 100% blight). Each treatment was replicated three times, and all experiments were repeated four times. Small blue-gray, water-soaked lesions with dark brown borders were observed on leaves of all inoculated ryegrass germ plasms. Advanced symptoms included blighting of much of the leaves. The mean disease severity rating was 3.8 (range 2 to 7) for all experimental units and all 25 germ plasms. P. grisea was isolated from leaves that were inoculated with WF9826. This is the first report of gray leaf spot of perennial ryegrass caused by P. grisea in Illinois. Reference: (1) P. J. Landschoot et al. Plant Dis. 76:1280, 1992.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1431-1431 ◽  
Author(s):  
J. Gao ◽  
Y. N. Liu ◽  
N. Nan ◽  
B. H. Lu ◽  
W. Y. Xia ◽  
...  

Chinese woad (Isatis indigotica) is a biennial herb in the Brassicaceae that is widely cultivated in China. Extracts from the roots and leaves have potential pharmaceutical use for treatment of flu, encephalitis, measles, hepatitis, and mumps (2). In June 2012, a leaf spot was observed on 1-year-old plants of I. indigotica in the medicinal garden of Jilin Agricultural University, Changchun, Jilin Province, China. More than 50% of the leaves and 100% of the plants in the garden were symptomatic. In the initial stage of infection, irregular to circular, dark gray spots, each surrounded by a chlorotic halo, appeared on leaves. The spots ranged from pinpoint to 5 mm in diameter. Some spots enlarged and coalesced, forming concentric rings. Black, sunken, fusiform lesions were observed on the petioles. Lesions gradually dried and exhibited a shot-hole appearance, and entire infected leaves desiccated. Small pieces of infected leaves and petioles were surface-disinfested in 75% ethanol for 60 s, rinsed thrice in sterilized distilled water, dried, and plated on potato dextrose agar. Olive-green mycelium developed after 2 days of incubation at 25°C, turned dark green, and covered the petri dish 10 days later. The periphery of each colony was gray and velvety. On potato carrot agar medium, conidia formed on branched chains. Conidiophores arose singly or in clusters, were straight or flexuous, separated, and measured 6.8 to 26.7 × 3.1 to 11.9 μm Conidia on host plant tissues were olivaceous, cylindrical or inverted clavate, and 25.8 to 65.2 × 10.9 to 18.3 μm Larger conidia were cylindrical or obclavate, and smaller conidia were oval. Transverse and longitudinal septa of conidia ranged from 3 to 10 and from 0 to 7 μm, respectively. A very small conidial beak or no beak was observed on each conidium. On the basis of these morphological characteristics,the fungus was identified as Alternaria brassicicola (3). A PCR assay with the ITS4 and ITS5 primers was used to amplify DNA extracted from each of four isolates (1). The sequence (567 bp) of isolate Sl-8 was submitted to GenBank (Accession No. KF531832), and showed 100% similarity to that of an A. brassicicola isolate (AF392985.1), confirming the species identification. Pathogenicity assays with 10 single-conidium isolates were done by spraying a conidial suspension (1 × 106 conidia/ml) of each isolate, or sterilized water for the control treatment, onto healthy leaves and petioles of five 3-month-old plants of I. indigotica. Inoculated and control plants were enclosed in plastic bags for 48 h. After 7 days, symptoms on inoculated plants were similar to those on the original diseased plants, while control plants remained symptomless. Re-isolation from inoculated plants produced mycelial colonies with morphological characteristics of A. brassicicola, fulfilling Koch's postulates. No fungus was isolated from control plants. A. napiformis and A. brassicae have been reported as causal agents of Alternaria leaf spot on I. indigotica in China (3). To our knowledge, however, this is the first report of A. brassicicola as a pathogen on I. indigotica in China. References: (1) N. L. Glass and G. C. Donaldson. Appl. Environ. Microbiol. 61:1323, 1995. (2) A. J. Li et al. Flora Reipublicae Popularis Sinicae Tomus 33, 1998. (3) T. Y. Zhang. Alternaria. Pages 99-100 in: Flora Fungorum Sinicorum, 2003.


Sign in / Sign up

Export Citation Format

Share Document