scholarly journals First Report of Bleeding Canker of Pear Tree Trunks Caused by Dickeya fangzhongdai in Korea

Plant Disease ◽  
2021 ◽  
Author(s):  
Eu Ddeum Choi ◽  
Youngmin Kim ◽  
Yerim Lee ◽  
Min-Hye Jeong ◽  
Gyoung Hee Kim ◽  
...  

Pears (Pyrus pylifolia L.) are cultivated nationwide as one of the most economically important fruit trees in Korea. At the end of October 2019, bleeding canker was observed in a pear orchard located in Naju, Jeonnam Province (34°53′50.54″ N, 126°39′00.32″ E). The canker was observed on trunks and branches of two 25-year-old trees, and the diseased trunks and branches displayed partial die-back or complete death. When the bark was peeled off from the diseased trunks or branches, brown spots or red streaks were found in the trees. Bacterial ooze showed a rusty color and the lesion was sap-filled with a yeasty smell. Trunks displaying bleeding symptoms were collected from two trees. Infected bark tissues (3 × 3 mm) from the samples were immersed in 70% ethanol for 1 minute, rinsed three times in sterilized water, ground to fine powder using a mortar and pestle, and suspended in sterilized water. After streaking each suspension on Luria-Bertani (LB) agar, the plates were incubated at 25°C without light for 2 days. Small yellow-white bacterial colonies with irregular margins were predominantly obtained from all the samples. Three representative isolates (ECM-1, ECM-2 and ECM-3) were subjected to further characterization. These isolates were cultivated at 39 C, and utilized (-)-D-arabinose, (+) melibiose, (+)raffinose, mannitol and myo-inositol but not 5-keto-D-gluconate, -gentiobiose, or casein. These isolates were identified as Dickeya sp. based on the sequence of 16S rRNA (MT820458-820460) gene amplified using primers 27f and 1492r (Heuer et al. 2000). The 16S rRNA sequences matched with D. fangzhongdai strain ND14b (99.93%; CP009460.1) and D. fangzhongdai strain PA1(99.86%; CP020872.1). The recA, fusA, gapA, purA, rplB, and dnaX genes and the intergenic spacer (IGS) regions were also sequenced as described in Van der wolf et al. (2014). The recA (MT820437-820439), fusA (MT820440-820442), gapA (MT820443-820445), purA (MT820446-820448), rplB (MT820449-820451), dnaX (MT820452-820454) and IGS (MT820455-820457) sequences matched with D. fangzhongdai strains JS5, LN1 and QZH3 (KT992693-992695, KT992697-992699, KT992701-992703, KT992705-992707, KT992709-992711, KT992713-992715, and KT992717-992719, respectively). A neighbor-joining phylogenetic analysis based on the concatenated recA, fusA, gapA, purA, rplB, dnaX and IGS sequences placed the representative isolates within a clade comprising D. fangzhongdai. ECM-1 to 3 were grouped into a clade with one strain isolated from waterfall, D. fangzhongdai ND14b from Malaysia. Pathogenicity test was performed using isolate ECM-1. Three two-year-old branches and flower buds on 10-year-old pear tree (cv. Nittaka), grown at the National Institute of Horticultural and Herbal Science Pear Research Institute (Naju, Jeonnam Province in Korea), were inoculated with 10 μl and 2 μl of a bacterial suspension (108 cfu/ml), respectively, after wounding inoculation site with a sterile scalpel (for branch) or injecting with syringe (for flower bud). Control plants were inoculated with water. Inoculated branches and buds in a plastic bag were placed in a 30℃ incubator without light for 2 days (Chen et al. 2020). Both colorless and transparent bacterial ooze and typical bleeding canker were observed on both branches and buds at 3 and 2 weeks post inoculation, respectively. No symptoms were observed on control branches and buds. This pathogenicity assay was conducted three times. We reisolated three colonies from samples displaying the typical symptoms and checked the identity of one by sequencing the dnaX locus. Dickeya fangzhongdai has been reported to cause bleeding canker on pears in China (Tian et al. 2016; Chen et al. 2020). This study will contribute to facilitate identification and control strategies of this disease in Korea. This is the first report of D. fangzhongdai causing bleeding canker on pears in Korea.

Plant Disease ◽  
2021 ◽  
Author(s):  
Di Yang ◽  
Chan Juan Du ◽  
Yunfeng Ye ◽  
Lian Fu Pan ◽  
Jin Zhang ◽  
...  

Banana (Musa spp.) is a popular fruit all over the world, and it’s also an important cash crop with a planting area of 358,924 ha in southern China. In July 2020, a peduncle soft rot disease occurred on dwarf banana (Musa sp. cv. Guangfen) in Guigang city (N22°50'29″, E109° 43'34″), Guangxi province, China. More than 20% plants were infected in the banana plantation. The first external sign of the disease appeared on the incisional wound after the flower bud was cut off from the peduncle. The symptom initially appeared as a black lesion on the wound, then extended into the internal tissue of the whole peduncle. In the later stages, the internal tissue became soft and rot, occasionally formed a necrotic cavity, and eventually led to the black rot of the whole peduncle with a foul smell. To isolate the pathogen, the internal lesion tissues of 5 mm × 5 mm were collected between the border of symptomatic and healthy tissue, treated with 75% ethanol for 10 s, and 0.1% HgCl2 for 3 min, then rinsed with sterile water for three times. Sterilized tissue fragments were cut to pieces with sterilized surgical shears and soaked in 5 mL sterile water, then shaken for 10 min in a vortex oscillator. The suspension was diluted 1000 times with sterilized water,then plated on nutrient-agar medium and incubated at 28℃ in darkness for 24 h. Among the 32 isolates, 23 pure bacterial cultures with similar morphology were predominantly obtained from the samples. These bacteria were gram-negative, and their colonies were initially yellowish white with irregular edges and smooth surfaces, then turned to grayish blue after 72 h incubated at 28℃. The representative isolates GZF2-2 and GZF1-8 were selected for further identification. Genomic DNA was isolated from the bacteria and the 16S rDNA was amplified with primers 27F/1492R (Weisburg et al. 1991) and sequenced. The obtained sequences (GenBank Accession No. MZ768922 and OK668082) showed >99% identities to several records of Dickeya fangzhongdai deposited in NCBI GenBank (1400/1404 bps for GZF2-2 to KT992690, 1409/1417 bps for GZF1-8 to MT613398) based on BLAST analysis. In addition, the recA, fusA, gapA, purA, rplB, dnaX genes and the 16S-23S intergenic spacer (IGS) regions of the two isolates were also amplified and sequenced (GenBank Accession Nos. OK634381-OK634382, OK634369- OK634370, OK634373-OK634374, OK634377-OK634378, OK634385-OK634386, OK634365- OK634366 and OK631722-OK631723) as described by Tian et al. (2016). All the DNA sequences matched that of D. fangzhongdai strains JS5T (percent identities>99.06%), PA1 and ECM-1 in GenBank. Neighbor-joining phylogenetic analysis by software MegaX (Kumar et al. 2018) based on the 16S rDNA sequences revealed that the two isolates were in the same clade with reported D. fangzhongdai strains. Multilocus sequence analysis of the other seven regions also showed the two representative isolates were belong to D. fangzhongdai. Therefore, the isolates were identified as D. fangzhongdai. Pathogenicity of isolate GZF2-2 was investigated to demonstrate Koch’s postulate. The end of the banana peduncles of 6 healthy plants were cut off, and 10 mL bacterial suspension (108 CFU/mL) was inoculated to the fresh wound on the plants using sterile brushes. Six control plants were inoculated with sterilized water. All the inoculated peduncles were covered with plastic bags to maintain high humidity. After 28 days, all the peduncles inoculated with strain GZF2-2 showed soft rot symptoms similar to those observed in the field, while the controls remained symptomless. The same bacteria were re-isolated from the symptomatic peduncles and confirmed by sequencing the 16S rDNA. D. fangzhongdai has been reported to cause soft rot on onion (Ma et al. 2020) and bleeding cankers on pear trees (Chen et al. 2020). To the best of our knowledge, this is the first report of D. fangzhongdai causing peduncle soft rot on banana in China.


Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1819-1819 ◽  
Author(s):  
A. G. Albarracín Orio ◽  
E. Brücher ◽  
M. C. Plazas ◽  
P. Sayago ◽  
F. Guerra ◽  
...  

Stewart's wilt is a serious disease of corn (Zea mays L.) caused by the bacterium Pantoea stewartii subsp. stewartii (Pss). Typical symptoms of infected fields and dent corn are longitudinal streaks with irregular or wavy margins, which are parallel to the veins and may extend the length of the leaf. These pale to green yellow lesions become dry and brown as the disease progresses producing a leaf blight (4). During the growing seasons 2010 to 2011 and 2011 to 2012, symptoms of bacterial leaf blight of corn were observed in central Argentina maize fields, with an incidence of 54% in Córdoba province. To identify the pathogen, leaves from 10 symptomatic maize plants per field were collected from 15 fields covering a representative geographical area. High populations of morphologically uniform bacteria were isolated from leaf tissues by conventional methods using King's medium B agar (2). Ten representative facultatively anaerobic gram-negative, non-fluorescing, non-motile, catalase positive and oxidase negative rod-shaped and yellow-pigmented bacterial isolates were evaluated further. The biochemical profile obtained was: fermentative metabolism, negative indol, acetoin and hydrogen sulfide production, negative gelatin hydrolysis (22°C), positive acid production from D-glucose and lactose, negative gas production from D-glucose, and negative nitrate reduction (1). All the isolates produced a 300-bp band with PCR using the species specific primer pair PST3581/PST3909c (3). The Pss ATCC 8199 and Pseudomonas fluorescens ATCC 13525 strains were used as positive and negative controls for the PCR assays, respectively. The pathogenicity test was performed by stem inoculation of five to ten P2069 YR maize plants (one to two leaf growth stage) grown in growth chamber. Plants were inoculated by syringe with a 107 to 108 cell/ml bacterial suspension and kept in a humid chamber at 25 to 27°C. Plants inoculated with Pss ATCC 8199 or with sterile water were used as positive and negative control treatments, respectively. The development of symptoms similar to those originally found in the field was observed on all the plants inoculated with the different isolates at 7 to 10 days post inoculation. In addition, symptoms on inoculated plants were similar to those observed for the positive control treatment. No symptoms were found on negative controls. Koch's postulates were fulfilled since bacteria isolated from symptomatic tissue had identical characteristics to isolates used to inoculate plants and to the reference Pss strain for biochemical tests and PCR reaction mentioned above. To our knowledge, this is the first report of P. stewartii subsp. stewartii isolated from diseased maize in Argentina. References: (1) J. G. Holt et al. Page 179 in: Bergey's manual of determinative bacteriology. Williams and Wilkins, Baltimore, MD, 1994. (2) OEPP/EPPO. Bulletin OEPP/EPPO Bulletin, 36: 111, 2006. Pantoea stewartii subsp. stewartii diagnostic. (3) A. Wensing et al. Appl. Environ. Microbiol. 76:6248, 2010. (4) D. G. White Page 4 in: Compendium of corn disease. The American Phytopathology Society, 1999.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1110-1110 ◽  
Author(s):  
E. Golkhandan ◽  
K. Sijam ◽  
S. Meon ◽  
Z. A. M. Ahmad ◽  
A. Nasehi ◽  
...  

Soft rot of cabbage (Brassica rapa) occurs sporadically in Malaysia, causing economic damage under the hot and wet Malaysian weather conditions that are suitable for disease development. In June 2011, 27 soft rotting bacteria were isolated from cabbage plants growing in the Cameron Highlands and Johor State in Malaysia where the economic losses exceeded 50% in severely infected fields and greenhouses. Five independent strains were initially identified as Pectobacterium wasabiae based on their inability to grow at 37°C, and elicit hypersensitive reaction (HR) on Nicotiana tabaccum and their ability to utilize raffinose and lactose. These bacterial strains were gram-negative, rod-shaped, N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG-positive and positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. All strains were negative for indole production, phosphatase activity, reducing sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-methyl-D-glucoside, and D-arabitol. All the strains exhibited pectolytic activity on potato slices. PCR assays were conducted to distinguish P. wasabiae from P. carotovorum subsp. brasiliensis, P. atrosepticum, and other Pectobacterium species using primers Br1f/L1r (2), Eca1f/Eca2r (1), and EXPCCF/EXPCCR, respectively. DNA from strains did not yield the expected amplicon with the Br1f/L1r and Eca1f/Eca2r, whereas a 550-bp amplicon typical of DNA from P. wasabiae was produced with primers EXPCCF/EXPCCR. ITS-RFLP using the restriction enzyme, Rsa I, produced similar patterns for the Malaysian strains and the P. wasabiae type strain (SCRI488), but differentiated it from P. carotovora subsp. carotovora, P. atrosepticum, P. carotovorum subsp. brasiliensis, and Dickeya chrysanthemi type strains. BLAST analysis of the 16S rRNA DNA sequence (GenBank Accession No. KC445633) showed 99% identity to the 16S rRNA of Pw WPP163. Phylogenetic reconstruction using concatenated DNA sequences of mdh and gapA from P. wasabiae Cc6 (KC484657) and other related taxa (4) clustered Malaysian P. wasabiae strains with P. wasabiae SCRI488, readily distinguishing it from other closely related species of Pectobacterium. Pathogenicity assays were conducted on leaves and stems of four mature cabbage plants for each strain (var. oleifera) by injecting 10 μl of a bacterial suspension (108 CFU/ml) into either stems or leaves, and incubating them in a moist chamber at 80 to 90% relative humidity at 30°C. Water-soaked lesions similar to those observed in the fields and greenhouses were observed 72 h after injection and bacteria with similar characteristics were consistently reisolated. Symptoms were not observed on water-inoculated controls. The pathogenicity test was repeated with similar results. P. wasabiae was previously reported to cause soft rot of horseradish in Japan (3). However, to our knowledge, this is the first report of P. wasabiae infecting cabbage in Malaysia. References: (1) S. H. De Boer and L. J. Ward. Phytopathology 85:854, 1995. (2) V. Duarte et al. J. Appl. Microbiol. 96:535, 2004. (3) M. Goto and K. Matsumoto. Int. J. Syst. Bacteriol. 37:130, 1987. (4) B. Ma et al. Phytopathology 97:1150, 2007.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yongyan Zhang ◽  
Fan Liu ◽  
Bin Wang ◽  
Dongliang Qiu ◽  
Jiapeng Liu ◽  
...  

Banana (Musa acuminata) is one of the most popular and widely consumed fruit crops in the world. During late October to early November 2020, a banana finger-tip rot disease was observed in the banana (cultivar ‘Brazil’, AAA group) orchard of about 12 hectares located in Zhongcun, Zhangmu Town, Fumian District, Yulin City, Guangxi province, China. The disease incidence was about 0.5% at the surveyed field. Infected fingers and their tips were usually normal in the appearances and then turned to brown to black discoloration in the central fruit pulp adjacent to the fingertips (Fig. 1A). In severe infection, diseased fingers showed brown to black discoloration in both the central and the periphery fruit pulp, and along the longitudinal axis throughout the fruit (Fig. 1B-C). The symptomatic banana fingers were surface-disinfected with 1% sodium hypochlorite for 30 sec, 75% ethanol for 30 sec then rinsed three times with sterile distilled water. The flesh tissues were ground in a sterile mortar and soaked in 1 ml of sterile distilled water for 30 min. A 50 μl of tissue suspensions was streaked onto Luria-Bertani (LB) medium. Single colonies were picked and re-streaked onto new LB medium. The cultures were incubated at 37°C for 24 h. Two representative strains, GX and GX2, were obtained from symptomatic pulps and used in the following studies. To molecularly identify the bacterial species, we performed a polymerase chain reaction (PCR) using 16S rRNA and recA primers (Turner et al. 1999; Lee and Chan 2007) and amplified 1,442 bp and 1,019 bp sequences, respectively. The amplified sequences were deposited in GenBank under the accession numbers MZ267253 and MZ961355 for the 16S rRNA and MZ287336 and MZ983484 for the recA genes. BLASTn searches shared more than 99% similarity with the reference sequences of B. cepacia strains (MK680073.1 and KC261418.1 for 16S rRNA; AY598028.1 and KF812859.1 for recA). Phylogenetic trees were constructed using the 16 rRNA and recA sequences and showed that the representative strains, GX and GX2, strongly clustered with B. cepacia type strains (Fig. 2). To further determine the genomovars of strain GX, we used specific PCR primers to the B. cepacia epidemic strain marker (BCESM), type III secretion gene cluster (bcscV) and cable pilin subunit gene (cblA) (Lee and Chan 2007; Ansari et al. 2019). The presence of bcscV and BCESM were confirmed by PCR, while cblA was not observed in the strains GX and GX2, suggesting that the isolated strains belong to B. cepacia genomovar III and are slightly different from the Iranian and Taiwan strains of B. cepacia (Lee and Chan 2007; Ansari et al. 2019). Pathogenicity test was conducted on banana fingers (cultivar ‘Zhongjiao No.3’) at the immature and full ripe stages. A final suspensions of 106 CFU/ml, was injected into the banana fingers (100 μl per finger) through the center of the stigma (Lee and Chan 2007; Ansari et al. 2019). The fingers inoculated with sterile water were used as negative control. To maintain humidity, the treated fingertips were wrapped with Parafilm. For each treatment, ten independent replicates were conducted. At 10 days post-inoculation (dpi), the pulp of immature bananas exhibited reddish brown decaying tissue, which symptoms were similar to those observed in the field (Fig. 1D). Moreover, the pulp tissues of ripe bananas showed a dark brown discoloration in the tip at 5 dpi, whereas the controls remained symptomless (Fig. 1E). The same bacterium was re-isolated from diseased tissues and its identification confirmed by 16S rRNA, thus fulfilling the Koch’s postulates. This disease was first described in Honduras in Latin America, and then reported in Taiwan province of China, and Iran (Buddenhagen 1968; Lee et al. 2003; Ansari et al. 2019). To our knowledge, this is the first report of banana finger-tip rot caused by B. cepacia in the Guangxi province, China. It is necessary to determine the distribution of B. cepacia and to prevent its spread in Guangxi province of China.


Plant Disease ◽  
2014 ◽  
Vol 98 (9) ◽  
pp. 1281-1281 ◽  
Author(s):  
S. Mahadevakumar ◽  
Vandana Yadav ◽  
G. S. Tejaswini ◽  
S. N. Sandeep ◽  
G. R. Janardhana

Lemon (Citrus lemon (L.) Burm. f.) is an important fruit crop cultivated worldwide, and is grown practically in every state in India (3). During a survey conducted in 2013, a few small trees in a lemon orchard near Mysore city (Karnataka) (12°19.629′ N, 76°31.892′ E) were found affected by dieback disease. Approximately 10 to 20% of trees were affected as young shoots and branches showed progressive death from the apical region downward. Different samples were collected and diagnosed via morphological methods. The fungus was consistently isolated from the infected branches when they were surface sanitized with 1.5% NaOCl and plated on potato dextrose agar (PDA). Plates were incubated at 26 ± 2°C for 7 days at 12/12 h alternating light and dark period. Fungal colonies were whitish with pale brown stripes having an uneven margin and pycnidia were fully embedded in the culture plate. No sexual state was observed. Pycnidia were globose, dark, 158 to 320 μm in diameter, and scattered throughout the mycelial growth. Both alpha and beta conidia were present within pycnidia. Alpha conidia were single celled (5.3 to 8.7 × 2.28 to 3.96 μm) (n = 50), bigittulate, hyaline, with one end blunt and other truncated. Beta conidia (24.8 to 29.49 × 0.9 to 1.4 μm) (n = 50) were single celled, filiform, with one end rounded and the other acute and curved. Based on the morphological and cultural features, the fungal pathogen was identified as Phomopsis citri H.S. Fawc. Pathogenicity test was conducted on nine healthy 2-year-old lemon plants via foliar application of a conidial suspension (3 × 106); plants were covered with polythene bags for 6 days and maintained in the greenhouse. Sterile distilled water inoculated plants (in triplicate) served as controls and were symptomless. Development of dieback symptoms was observed after 25 days post inoculation and the fungal pathogen was re-isolated from the inoculated lemon trees. The internal transcribed spacer region (ITS) of the isolated fungal genomic DNA was amplified using universal-primer pair ITS1/ITS4 and sequenced to confirm the species-level diagnosis (4). The sequence data of the 558-bp amplicon was deposited in GenBank (Accession No. KJ477016.1) and nBLAST search showed 99% homology with Diaporthe citri (teleomorph) strain 199.39 (KC343051.1). P. citri is known for its association with melanose disease of citrus in India, the United States, and abroad. P. citri also causes stem end rot of citrus, which leads to yield loss and reduction in fruit quality (1,2). Dieback disease is of serious concern for lemon growers as it affects the overall productivity level of the tree. To the best of our knowledge, this is the first report of P. citri causing dieback of lemon in India. References: (1) I. H. Fischer et al. Sci. Agric. (Piracicaba). 66:210, 2009. (2) S. N. Mondal et al. Plant Dis. 91:387, 2007. (3) S. P. Raychaudhuri. Proc. Int. Soc. Citriculture 1:461, 1981. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2020 ◽  
Author(s):  
Boda Praveen ◽  
A. Nagaraja ◽  
M. K. Prasanna Kumar ◽  
Devanna Pramesh ◽  
K. B. Palanna ◽  
...  

Little millet (LM) is a minor cereal crop grown in the Indian sub-continent. During October 2018, dark brown, circular to oval necrotic spots surrounded by concentric rings were observed on the upper leaf surface of the LM (cv. VS-13) grown in the fields of the University of Agricultural Sciences, Bengaluru, India (13.0784oN, 77.5793oE). As the disease progressed, infected leaves became blighted. Disease incidence up to 53% was recorded in 3 fields of 0.4-hectare area each. Thirty symptomatic leaves were collected to isolate the associated causal organism. The margins of diseased tissue were cut into 5 × 5-mm pieces, surface-sterilized in 75% ethanol for 45 seconds followed by 1% sodium hypochlorite for 1 min, finally rinsed in sterile distilled water five times and placed on PDA. After 7 days of incubation at 25°C, greyish fungal colonies appeared on PDA. Single-spore isolations were performed to obtain ten isolates. Pure cultures of the fungus initially produced light gray aerial mycelia that later turned to dark grey. All isolates formed obclavate to pyriform conidia measured 22.66-48.97μm long and 6.55-13.79µm wide with 1-3 longitudinal and 2-7 transverse septa with a short beak (2.55-13.26µm) (n=50). Based on the conidial morphology, the fungus was identified as Alternaria sp. Further, the taxonomic identity of all ten isolates was confirmed as A. alternata using species-specific primers (AAF2/AAR3, Konstantinova et al. 2002) in a PCR assay. Later, one of the isolate UASB1 was selected, and its internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (gapdh), major allergen Alt a 1 (Alt a 1), major endo-polygalacturonase (endoPG), OPA10-2, and KOG1058 genes were amplified in PCR (White et al. 1990; Berbee et al. 1999; Woudenberg et al. 2015), and the resultant products were sequenced and deposited in the NCBI GenBank (ITS, MN919390; gapdh, MT637185; Alt a 1, MT882339; endoPG, MT882340; OPA10-2, MT882341; KOG1058, MT882342). Blastn analysis of ITS, gapdh, Alt a 1, endoPG, OPA10-2, KOG1058 gene sequences showed 99.62% (with AF347031), 97.36% (with AY278808), 99.58% (with AY563301), 99.10% (with JQ811978), 99.05% (with KP124632) and 99.23% (with KP125233) respectively, identity with reference strain CBS916.96 of A. alternata, confirming UASB1 isolate to be A. alternata. For pathogenicity assay, conidial suspension of UASB1 isolate was spray inoculated to ten healthy LM (cv. VS-13) plants (45 days old) maintained under protected conditions. The spore suspension was sprayed until runoff on healthy leaves, and ten healthy plants sprayed with sterile water served as controls. Later, all inoculated and control plants were covered with transparent polyethylene bags and were maintained in a greenhouse at 28±2 ◦C and 90% RH. The pathogenicity test was repeated three times. After 8 days post-inoculation, inoculated plants showed leaf blight symptoms as observed in the field, whereas no disease symptoms were observed on non-inoculated plants. Re-isolations were performed from inoculated plants, and the re-isolated pathogen was confirmed as A. alternata based on morphological and PCR assay (Konstantinova et al. 2002). No pathogens were isolated from control plants. There is an increasing acreage of LM crop in India, and this first report indicates the need for further studies on leaf blight management and the disease impacts on crop yields.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1111-1111 ◽  
Author(s):  
S. N. Mollaei ◽  
B. Harighi

Pear (Pyrus L.) is one of the most widely grown crops in western Iran. Since 2010, an outbreak of a disease with symptoms similar to fire blight has been observed on pear trees in various locations of Kurdistan Province. Initial flower symptoms include water-soaking and rapidly shriveling, infected flowers that remained hanging on the trees. Immature fruits become water-soaked, turned brown, and shriveled. Infected flowers and immature fruits were collected from different locations in the province. Small pieces (about 1 mm2) were excised from infected tissues, surface sterilized with 0.5% sodium hypochlorite solution, followed by rinsing in sterile-distilled water (SDW). Each piece was macerated in 2 to 3 ml of SDW, streaked onto nutrient agar sucrose or eosin methylene blue agar media, and incubated at 27 to 29°C. After 48 to 72 h, single colonies were subcultured onto the same media and stored at 4°C. In total, 74 bacteria were isolated from infected tissues. All isolates were gram-negative and rod-shaped. Based on other phenotypic properties, strains were grouped into three clusters at a similarity level of 65% (data not shown). Forty-one and 23 strains showed properties as expected for Erwinia amylovora and Enterobacter sp., respectively. Other strains showed properties resembling Pantoea agglomerans. All strains identified as E. amylovora produced an expected DNA fragment of about 900 bp by PCR using primers PE29A and PE29B corresponding to plasmid pEA29 (1). The result was confirmed by using primers AMSbL and AMSbR derived from the ams region required for amylovoran synthesis of E. amylovora. E. amylovora strains produced an expected 1,600-bp fragment (2). For the pathogenicity test, a bacterial suspension was adjusted to approximately 1 × 107 CFU/ml from cell cultures grown in nutrient broth at 27°C for 48 h. Immature pear fruits sterilized with 70% ethanol and rinsed with SDW were injected with the bacterial suspension using a 25-gauge sterile needle. Fruits injected with sterile water were used as controls. Pear fruits were kept in a mist chamber at 27 to 29°C. Symptoms were assessed up to 2 weeks after inoculation. All E. amylovora strains produced typical symptoms on inoculated immature pear fruits. Necrosis and oozing of bacterial exudates were observed after 3 to 7 days. The phylogenetic position of two selected strains was analyzed by sequence comparison of recA gene among other species in the genus Erwinia and related bacteria. The recA sequence of bacterial strains identified as E. amylovora revealed high similarity (99%) to the E. amylovora type strain (CFBP 1430). Genetic diversity of selected strains was assessed and compared with E. amylovora reference strain CFBP 1430 using ERIC and REP primers in rep-PCR analysis. (3). UPGMA cluster analysis of the combined data obtained in the rep-PCR experiments using Dice's coefficient revealed that the majority of E. amylovora strains showed the same fingerprint patterns at a similarity level of 93%, indicating genetic homogeneity among strains but clearly separated from Enterobacter sp. and P. agglomerans strains. To our knowledge, this is the first report that characterizes the phenotypic and genetic properties of E. amylovora in western part of Iran. References: (1) S. Bereswill et al. Appl. Environ. Microbiol. 58:3522, 1992. (2) S. Bereswill et al. Appl. Environ. Microbiol. 61:2636, 1995. (3) J. Versalovic et al. Mol. Cell Biol. 5:25, 1994.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 989-989 ◽  
Author(s):  
W. Cheon ◽  
Y. H. Jeon

Orostachys japonica (Maxim) A. Berger is an important traditional medicine in Korea. The extract of this plant has antioxidant activity and suppresses cancer cell proliferation (1). From summer through fall of 2012 and 2013, a high incidence (~10% to 30%) of disease outbreaks of all plants characterized by water-soaked lesions and soft rot with a stinky odor was observed in cultivated O. japonica around Uljin (36°59′35.04″N, 126°24′1.51″E), Korea. Water-soaked lesions were first observed on the stem base of plants. Subsequently, the plants collapsed, although the upper portion remained asymptomatic. Thereafter, the lesions expanded rapidly over the entire plant. To isolate potential pathogens from infected leaves, small sections (5 to 10 mm2) were excised from the margins of lesions. Ten bacteria were isolated from ten symptomatic plants. Three representative isolates from different symptomatic plants were used for identification and pathogenicity tests. Isolated bacteria were gram negative, pectolytic on crystal violet pectate agar, nonfluorescent on King's medium B, and elicited a hypersensitive response in tobacco plants. All isolates caused soft rot of potato tubers. These isolates also differed from isolates of Erwinia chrysanthemi (Ech) that they were insensitive to erythromycin and did not produce phosphatase. These isolates differed from known strains of E. carotovora subsp. atroseptica in that they did not produce reducing substances from sucrose (2). Use of the Biolog GN microplate and the Release 4.0 system identified the isolate as Pectobacterium carotovorum subsp. carotovorum with 81.2% similarity. The 16S rRNA of the isolated bacteria was amplified by PCR and sequenced as described by Weisburg et al. (3). A BLAST analysis for sequence similarity of the 16S rRNA region revealed 99% similarity with nucleotide sequences for P. carotovorum subsp. carotovorum isolates (KC790305, KC790280, JF926758, JX196705, and AB680074). The pathogenicity of three bacterial isolates was examined on three 2-year-old O. japonica plants by adding 50 μl of a bacterial suspension containing 108 CFU/ml when wounding the leaves with sterile needles. Ten control plants were inoculated with sterilized water. After inoculation, plants were maintained in a growth chamber at 25°C with relative humidity ranging from 80 to 90%. After 2 to 3 days, tissue discoloration, water-soaked lesions, and soft rot developed around the inoculation point. Severe symptoms of soft rot and darkening developed on leaves of inoculated plants within 3 to 5 days after inoculation. All controls remained healthy during these experiments. The bacterial strains re-isolated from the parts of the leaf showing the symptoms and identified as P. carotovorum subsp. carotovorum on the basis of the biochemical and physiological tests, as well as Biolog system. The results obtained for pathogenicity, Biolog analysis, and molecular data corresponded with those for P. carotovorum subsp. carotovorum. To our knowledge, this is the first report of the presence of P. carotovorum on O. japonica in Korea. References: (1) C.-H. Kim et al. Kor. J. Med. Crop Sci. 11:31, 2003. (2) N. W. Schaad et al. Erwinia Soft Rot Group. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. N. W. Schaad et al. eds. American Phytopathological Society, St. Paul. MN, 2001. (3) W. G. Weisburg et al. J. Bacteriol. 173:697, 1991.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhiwei Song ◽  
Chen Yang ◽  
Rong Zeng ◽  
Shi-gang Gao ◽  
Wei Cheng ◽  
...  

Strawberry (Fragaria × ananassa Duch.) is a kind of fruit with great economic importance and widely cultivated in the world. From 2019 to 2020, a serious crown rot disease was sporadically observed in several strawberry cultivars including ‘Zhang Ji’, ‘Hong Yan’ and ‘Yue Xiu’ in Shanghai, China. Initially, water-soaked rot appeared in inner tissue of strawberry crown, then progressed into browning and hollowing symptoms accompanied with yellow discolorations of young leaves. To isolate and identify the causal agent, small pieces of tissue taken from ten diseased crowns were sterilized by 70% alcohol. The cut-up pieces were macerated and serially diluted. The dilutions were placed on nutrient agar (NA) medium. After incubation at 25°C for 4-5 days, the yellow bacterial colonies were tiny and were streaked on NA plate for purification. The colonies were yellow, mucoid, smooth-margined, and five independent representative colonies were used for further confirmation. To confirm the species identity of the bacterial, genomic DNA was extracted from the five representative isolates, and 16S rRNA gene was amplified and sequenced using universal primers 27F/1492R. The 16S rRNA sequence was deposited in GenBank (MW725235) and showed 99% nucleotide similarity with Xanthomonas fragariae strain LMG 708 (NR_026318). The isolate’s identity was further confirmed by X. fragariae-specific primers XF9/XF12 (Roberts et al. 1996). All five isolates could be detected by XF9/XF12 primer. To confirm Koch’s postulates, five healthy strawberry plants were placed in 1000 ml glass beakers by submerging the cutting wound in 50 ml the bacterial suspension of 108 CFU/ml. Five additional strawberry plants treated with sterilized water served as a control. The beakers containing inoculated plants were sealed with plastic film at 25°C. Water-soaked rot appeared on internal tissue of crown similar to those observed in the field within 10-12 days after inoculation, while the control samples remained healthy. The bacteria were re-isolated from rot of inoculated crowns, and confirmed by X. fragariae-specific primers XF9/XF12. X. fragariae has been reported to cause angular leaf spot on strawberry in China (Wang et al. 2017; Wu et al., 2020). It’s also found that X. fragariae could systematically infect crown tissue (Milholland et al. 1996; Mahuku and Goodwin, 1997). To our knowledge, this is the first report of X. fragariae causing strawberry crown rot in China. This report increased our understanding of X. fragariae, and showed that the spread of this disease might seriously threaten the development of strawberry industry in the future


Plant Disease ◽  
2021 ◽  
Author(s):  
Tingting Zhu ◽  
Linxuan Li ◽  
Antonios Petridis ◽  
George Xydis ◽  
Maozhi Ren

Ligusticum chuanxiong (known as Chuanxiong in China) is a traditional edible-medicinal herb, which has been playing important roles in fighting against COVID-19 (Ma et al. 2020). In March 2021, we investigated stem rot of Chuanxiong in six adjacent fields (~100 ha) in Chengdu, Sichuan Province, China. The disease incidence was above 5% in each field. Symptomatic plants showed stem rot, watersoaked lesions, and blackening with white hyphae present on the stems. Twelve symptomatic Chuanxiong plants (2 plants/field) were sampled. Diseased tissues from the margins of necrotic lesions were surface sterilized in 75% ethanol for 45 s, and 2% NaClO for 5 min. Samples were then rinsed three times in sterile distilled water and cultured on potato dextrose agar (PDA) at 25ºC for 72 h. Fourteen fungal cultures were isolated from 18 diseased tissues, of which eight monosporic isolates showed uniform characteristics. The eight fungal isolates showed fluffy white aerial mycelia and produced yellow pigments with age. Mung bean broth was used to induce sporulation. Macroconidia were sickle-shaped, slender, 3- to 5-septate, and averaged 50 to 70 μm in length. Based on morphological features of colonies and conidia, the isolates were tentatively identified as Fusarium spp. (Leslie and Summerell 2006). To identify the species, the partial translation elongation factor 1 alpha (TEF1-α) gene was amplified and sequenced (O’Donnell et al. 1998). TEF1-α sequences of LCSR01, LCSR02 and LCSR05 isolates (GenBank nos. MZ169386, MZ169388 and MZ169387) were 100%, 99.72% and 99.86% identical to that of F. asiaticum strain NRRL 26156, respectively. The phylogenetic tree based on TEF1-α sequences showed these isolates clustered with F. asiaticum using Neighbor-Joining algorithm. Furthermore, these isolates were identified using the specific primer pair Fg16 F/R (Nicholson et al. 1998). The results showed these isolates (GenBank nos. MZ164938, MZ164939 and MZ164940) were 100% identical to F. asiaticum NRRL 26156. Pathogenicity test of the isolate LCSR01 was conducted on Chuanxiong. After wounding Chuanxiong stalks and rhizomes with a sterile needle, the wounds were inoculated with mycelia PDA plugs. A total of 30 Chuanxiong rhizomes and stalks were inoculated with mycelia PDA plugs, and five mock-inoculated Chuanxiong rhizomes and stalks served as controls. After inoculation, the stalks and rhizomes were kept in a moist chamber at 25°C in the dark. At 8 days post inoculation (dpi), all inoculated stalks and rhizomes exhibited water-soaked and blackened lesions. At 10 dpi, the stalks turned soft and decayed, and abundant hyphae grew on the exterior of infected plants, similar to those observed in the field. No disease symptoms were observed on the control plants. The pathogen was re-isolated from the inoculated tissues and the identity was confirmed as described above. Ten fungal cultures were re-isolated from the 10 inoculated tissues, of which nine fungal cultures were F. asiaticum, fulfilling Koch’s postulates. To our knowledge, this is the first report of F. asiaticum causing stem rot of Chuanxiong in China. Chuanxiong has been cultivated in rotation with rice over multiple years. This rotation may have played a role in the increase in inoculum density in soil and stem rot epidemics in Chuanxiong. Diseased Chuanxiong may be contaminated with the mycotoxins produced by F. asciaticum, 3-acetyldeoxynivalenol or nivalenol, which may deleteriously affect human health. Therefore, crop rotations should be considered carefully to reduce disease impacts.


Sign in / Sign up

Export Citation Format

Share Document