scholarly journals First Report of Storage Tuber Rot in Sweetpotato (Ipomoea batatas) Caused by Plenodomus destruens in Korea

Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 1020-1020
Author(s):  
N. C. Paul ◽  
S.-S. Nam ◽  
W. Park ◽  
J.-W. Yang ◽  
A. Kachroo
Plant Disease ◽  
2021 ◽  
Author(s):  
Md Aktaruzzaman ◽  
Tania Afroz ◽  
Hyo-Won Choi ◽  
Byung Sup Kim

Perilla (Perilla frutescens var. japonica), a member of the family Labiatae, is an annual herbaceous plant native to Asia. Its fresh leaves are directly consumed and its seeds are used for cooking oil. In July 2018, leaf spots symptoms were observed in an experimental field at Gangneung-Wonju National University, Gangneung, Gangwon province, Korea. Approximately 30% of the perilla plants growing in an area of about 0.1 ha were affected. Small, circular to oval, necrotic spots with yellow borders were scattered across upper leaves. Masses of white spores were observed on the leaf underside. Ten small pieces of tissue were removed from the lesion margins of the lesions, surface disinfected with NaOCl (1% v/v) for 30 s, and then rinsed three times with distilled water for 60 s. The tissue pieces were then placed on potato dextrose agar (PDA) and incubated at 25°C for 7 days. Five single spore isolates were obtained and cultured on PDA. The fungus was slow-growing and produced 30-50 mm diameter, whitish colonies on PDA when incubated at 25ºC for 15 days. Conidia (n= 50) ranged from 5.5 to 21.3 × 3.5 to 5.8 μm, were catenate, in simple or branched chains, ellipsoid-ovoid, fusiform, and old conidia sometimes had 1 to 3 conspicuous hila. Conidiophores (n= 10) were 21.3 to 125.8 × 1.3 to 3.6 μm in size, unbranched, straight or flexuous, and hyaline. The morphological characteristics of five isolates were similar. Morphological characteristics were consistent with those described for Ramularia coleosporii (Braun, 1998). Two representative isolates (PLS 001 & PLS003) were deposited in the Korean Agricultural Culture Collection (KACC48670 & KACC 48671). For molecular identification, a multi-locus sequence analysis was conducted. The internal transcribed spacer (ITS) regions of the rDNA, partial actin (ACT) gene and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene were amplified using primer sets ITS1/4, ACT-512F/ACT-783R and gpd1/gpd2, respectively (Videira et al. 2016). Sequences obtained from each of the three loci for isolate PLS001 and PLS003 were deposited in GenBank with accession numbers MH974744, MW470869 (ITS); MW470867, MW470870 (ACT); and MW470868, MW470871 (GAPDH), respectively. Sequences for all three genes exhibited 100% identity with R. coleosporii, GenBank accession nos. GU214692 (ITS), KX287643 (ACT), and 288200 (GAPDH) for both isolates. A multi-locus phylogenetic tree, constructed by the neighbor-joining method with closely related reference sequences downloaded from the GenBank database and these two isolates demonstrated alignment with R. coleosporii. To confirm pathogenicity, 150 mL of a conidial suspension (2 × 105 spores per mL) was sprayed on five, 45 days old perilla plants. An additional five plants, to serve as controls, were sprayed with sterile water. All plants were placed in a humidity chamber (>90% relative humidity) at 25°C for 48 h after inoculation and then placed in a greenhouse at 22/28°C (night/day). After 15 days leaf spot symptoms, similar to the original symptoms, developed on the leaves of the inoculated plants, whereas the control plants remained symptomless. The pathogenicity test was repeated twice with similar results. A fungus was re-isolated from the leaf lesions on the inoculated plants which exhibited the same morphological characteristics as the original isolates, fulfilling Koch’s postulates. R. coleosporii has been reported as a hyperparasite on the rust fungus Coleosporium plumeriae in India & Thailand and also as a pathogen infecting leaves of Campanula rapunculoides in Armenia, Clematis gouriana in Taiwan, Ipomoea batatas in Puerto Rico, and Perilla frutescens var. acuta in China (Baiswar et al. 2015; Farr and Rossman 2021). To the best of our knowledge, this is the first report of R. coleosporii causing leaf spot on P. frutescens var. japonica in Korea. This disease poses a threat to production and management strategies to minimize leaf spot should be developed.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Tongke Liu ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Sweet potato [Ipomoea batatas (L.) Lam], is an extremely versatile vegetable that possesses high nutritional values. It is also a valuable medicinal plant having anti-cancer, antidiabetic, and anti-inflammatory activities. In July 2020, leaf spot was observed on leaves of sweet potato in Nanchang, China (28°45'51"N, 115°50'52"E), which affected the growth and development of the crop and caused tuberous roots yield losses of 25%. The disease incidence (total number of diseased plants / total number of surveyed plants × 100%) was 57% from a sampled population of 100 plants in the field. Symptomatic plants initially exhibited small, light brown, irregular-shaped spots on the leaves, subsequently coalescing to form large irregular brown lesions and some lesions finally fell off. Fifteen small pieces (each 5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water and incubated on potato dextrose agar (PDA) plates at 28°C in darkness. A total of seven fungal isolates with similar morphological characteristics were obtained as pure cultures by single-spore isolation. After 5 days of cultivation at 28°C, dark brown or blackish green colonies were observed, which developed brown, thick-walled, simple, or branched, and septate conidiophores. Conidia were 18.28 to 24.91 × 7.46 to 11.69 µm (average 21.27 × 9.48 µm, n = 100) in size, straight or slightly curved, middle cell unequally enlarged, brown to dark brown, apical, and basal cells slightly paler than the middle cells, with three septa. Based on morphological characteristics, the fungal isolates were suspected to be Curvularia plantarum (Raza et al. 2019). To further confirm the identification, three isolates (LGZ1, LGZ4 and LGZ5) were selected for molecular identification. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and translation elongation factor 1-alpha (EF1-α) genes were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004), gpd1/gpd2 (Berbee et al. 1999), EF-983F/EF-2218R (Rehner and Buckley 2005), respectively. The sequences of ITS region of the three isolates (accession nos. MW581905, MZ209268, and MZ227555) shared 100% identity with those of C. plantarum (accession nos. MT410571-72, MN044754-55). Their GAPDH gene sequences were identical (accession nos. MZ224017-19) and shared 100% identity with C. plantarum (accession nos. MN264120, MT432926, and MN053037-38). Similarly, EF1-α gene sequences were identical (accession nos. MZ224020-22) and had 100% identity with C. plantarum (accession nos. MT628901, MN263982-83). A maximum likelihood phylogenetic tree was built based on concatenated data from the sequences of ITS, GAPDH, and EF-1α by using MEGA 5. The three isolates LGZ1, LGZ4, and LGZ5 clustered with C. plantarum. The fungus was identified as C. plantarum by combining morphological and molecular characteristics. Pathogenicity tests were conducted by inoculating a conidial suspension (106 conidia/ml) on three healthy potted I. batatas plants (five leaves wounded with sterile needle of each potted plant were inoculated). In addition, fifteen wounded leaves of three potted plants were sprayed with sterile distilled water as a control. All plants were maintained in a climate box (12 h light/dark) at 25°C with 80% relative humidity. All the inoculated leaves started showing light brown flecks after 7 days, whereas the control leaves showed no symptoms. The pathogenicity test was conducted three times. The fungus was reisolated from all infected leaves of potted plants and confirmed as C. plantarum by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. plantarum causing leaf spot on sweet potato in China. The discovery of this new disease and the identification of the pathogen will contribute to the disease management, provide useful information for reducing economic losses caused by C. plantarum, and lay a foundation for the further research of resistance breeding.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 690-690
Author(s):  
Q.-L. Li ◽  
S.-P. Huang ◽  
T.-X. Guo ◽  
Z.-B. Pan ◽  
J.-Y. Mo ◽  
...  

Baphicacanthus cusia is a perennial herbaceous plant in the family Acanthaceae that is native to China, where it grows in warm temperate mountainous or hilly regions. It is commonly used as a Chinese herbal medicine. In March 2012, symptoms of leaf spot were observed on leaves of B. cusia in Long'an County, Guangxi, China, where this plant is extensively cultivated. Symptoms were initially small brown dots which developed into irregular to circular leaf spots. These spots enlarged and overlapped, extending until the 7- to 9-cm-long and 3- to 4-cm-wide leaves withered entirely, mostly within 2 months. On potato dextrose agar (PDA), the same fungus was cultured from 92% of 75 symptomatic leaf samples that had been surface sterilized in a 45-second dip in 0.1% mercuric chloride. Fungal structures were observed on diseased leaves: conidiophores (85 to 460 × 4 to 8 μm) were erect, brown, single or in clusters, and conidia (36 to 90 × 5 to 16 μm) were single or in chains of two to four, brown, cylindrical or obclavate, straight or slightly curved, with 3 to 18 pseudosepta and a conspicuous hilum. Three single-spore isolates were identified as Corynespora cassiicola (Berk & Curt.) Wei based on morphological and cultural characteristics (1). The rDNA internal transcribed spacer (ITS) region of one isolate, ZY-1, was sequenced (GenBank Accession No. JX908713), and it showed 100% identity to C. cassiicola, GenBank FJ852716, an isolate from Micronesia cultured from Ipomoea batatas (2). Pathogenicity tests were performed with each of the three isolates by spraying conidial suspensions (5 × 104 conidia/ml) containing 0.1% Tween 20 onto the surfaces of leaves of 60-day-old, 20-cm tall plants. For each isolate, 30 leaves from five replicate plants were treated. Control plants were treated with sterilized water containing 0.1% Tween 20. All plants were incubated for 36 h at 25°C and 90% relative humidity in an artificial climate chamber, and then moved into a greenhouse. Seven days after inoculation, dark brown spots typical of field symptoms were observed on all inoculated leaves, but no symptoms were seen on water-treated control plants. Koch's postulates were fulfilled by reisolation of C. cassiicola from diseased leaves. To our knowledge, this is the first report of C. cassiicola infecting B. cusia worldwide. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute: Kew, Surrey, England, 1971. (2) L. J. Dixon et al. Phytopathology 99:1015, 2009.


Plant Disease ◽  
2020 ◽  
Vol 104 (2) ◽  
pp. 596
Author(s):  
Yanzhi Mao ◽  
Gengbin Yang ◽  
Dewei Kong ◽  
Lele Liu ◽  
Yanfeng Hu

Plant Disease ◽  
2012 ◽  
Vol 96 (7) ◽  
pp. 1067-1067 ◽  
Author(s):  
V. Gupta ◽  
D. John ◽  
V. K. Razdan ◽  
S. K. Gupta

Bunium persicum (Kala zeera, also black cumin) is an economically important culinary crop that is cultivated for its seed pods and its tuberlike roots. In India, high-altitude regions of Himachal Pradesh, including the Padder valley and the Gurez area of Jammu and Kashmir, are areas of kalazeera production (3). In 2008 to 2009, tuber rot disease of kala zeera was observed during the late spring season in the Padder valley. Symptomatic plants were distributed in localized areas in the field and the symptoms included drying of foliage and rotting of tubers. White mycelia were found on the tubers at the late stages of disease development. Incidence of infection in the surveyed area was 80 to 90%. Yield losses were 50 to 60%. To isolate the causal pathogen, we cultured tissues from symptomatic tubers. Small bits of the infected tissue were surface disinfested in 0.1% mercuric chloride, followed by rinsing three times in sterile distilled water. The surface disinfested tissues were plated on potato dextrose agar (PDA) and incubated at 27°C for 4 days. Pure cultures of the mycelium from the diseased tissues were transferred to a second set of PDA for species identification. The fungus produced three types of spores: small, one-celled, oval microconidia; large, slightly curved, septate macroconidia; and rounded, thick-walled chlamydospores. Microconidia were mostly non-septate and 8.91 to 15.73 × 2.3 to 3.5 μm, whereas macroconidia were three- to five-septate and were 35.55 to 54.74 × 3.91 to 6.5 μm. On the basis of morphological characteristics (1), the fungus was identified and deposited as a member of the Fusarium solani species complex in the Indian Type Culture Collection, New Delhi (ID No. 8422.11). To confirm pathogenicity, healthy tubers were submerged for 20 min in a conidial suspension of the isolated fungus (1 × 105 cfu/ml), which was prepared in potato dextrose broth, incubated for 10 days at 27°C, and centrifuged at 140 rpm. Noninoculated controls were submerged in distilled water. Inoculated and control tubers were then planted in separate pots filled with sterilized soil and kept in a shade house. Symptoms appeared on inoculated tubers 9 to 10 days after planting. Signs of the pathogen in the form of mycelia were present. The tubers rotted and died 12 to 15 days after inoculation. Control tubers did not display any symptoms. F. solani species complex was reisolated from inoculated tubers, fulfilling Koch's postulates. F. solani has been reported to cause corm rot on gladiolus and saffron (2). To our knowledge, this is the first report of the F. solani species complex as pathogenic to tubers of kalazeera in India. References: (1) C. Booth. The Genus Fusarium. 47, 1971. (2) L. Z. Chen et al. J. Shanghai Agric. College 12:240, 1994. (3) K. S. Panwar et al. Agriculture Situation in India. 48:151, 1993.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jin Cheon Park ◽  
Yeonghoon Lee ◽  
Eom-Ji Hwang ◽  
Da Eun Kwon ◽  
won park ◽  
...  

Apios americana Medik, commonly known as American groundnut, is a leguminous perennial vine crop native to North America and is cultivated in Japan and Korea (Chu et al. 2019). Its tubers are edible and believed to be very nutritious, especially for women just after childbirth. The tubers also contain secondary metabolites, saponin and genistein, which is good for human health (Ichige et al. 2013). However, the storage of tubers at inappropriate temperatures and humidity levels can cause severe fungal infection, and adversely affect tuber quality. During March and April 2020, a white to pale-orange fungal mycelia were observed on stored American groundnut tubers, with 10 to 15% of seed tubers rotten. Infected tubers were collected, and fungal isolates were isolated on potato dextrose agar (PDA) using the single spore isolation method (Leslie and Summerell 2006). A pure culture (isolate JC20003) was obtained and stored at the Bioenergy Crop Research Institute, NICS, Muan, Republic of Korea. The fungus was cultured on PDA and V8 liquid media for 7 days at 25℃ to observe its morphological characteristics. The length and width of macroconidia ranged from 20.6 to 52.9 μm and 2.9 to 5.1 μm, respectively (n = 30). The microconidia were 8.5 to 14.9 μm and 2.3 to 4.2 μm in length and width, respectively (n = 30). Macroconidia were broadly falcate, strongly septate, 2 to 6 septations with dorsiventral curvature; chlamydospores were formed in chains; and microconidia were fusiform with 0 to 1 septation observed. Genomic DNA of the isolate was extracted using Solgent DNA extraction kit (Solgent, Daejeon, Korea), followed by PCR analysis using the internal transcribed spacer (ITS5/ITS4) and elongation factor (EF-1/EF2) genes (White et al. 1990; O’Donnel 2000). PCR products were sequenced and analyzed to confirm species identity (Yang et al. 2018). These sequences were deposited in GenBank (accession numbers MT703859/ITS and MT731939/EF). BLASTn search analysis showed 100% sequence similarity with Fusarium acuminatum (isolates N-51-1/ITS and WXWH24/EF). Based on morphological and molecular data analysis, the fungus was identified as F. acuminatum (Leslie and Summerell 2006; Marin et al. 2012). Pathogenicity tests were conducted on five tubers inoculated with 5 mm mycelial plugs with three replicates, while a non-mycelial plug served as the control. After 5 days of incubation in plastic containers at 25 °C with high humidity, typical symptoms developed. No symptoms were observed on the control tubers; F. acuminatum was re-isolated from artificially inoculated tubers to complete Koch’s postulates. This is the first report on post-harvest tuber rot caused by F. acuminatum in Apios americana.


2019 ◽  
Vol 17 (4) ◽  
pp. 446-453
Author(s):  
Victor Ohileobo DANIA

Tuber rot disease constitutes a serious threat to sweetpotato production worldwide, causing economic losses to farmers.  This study evaluated an eco-friendly approach using four biological control agents, Trichoderma viride, T. harzianum, T. hamatum and T. pseudokoningii for the management of post-harvest tuber rot disease of sweetpotato. Field surveys for infected tuber samples were conducted four across major sweetpotato states in Nigeria. Rot severity in inoculated tubers was evaluated over a storage period of four months and Trichoderma species isolated from the rhizosphere were bioassayed for the production of metabolites to evaluate the mechanism of antibiotic production for the control of rot pathogens using Gas Chromatography-Mass Spectroscopy. A total of 24 metabolites were produced by the Trichoderma species and the abundances were species dependent. Trichoderma species significantly (p<0.05) inhibited rot in treated tubers at 4 months after storage. However, T. harzianum was most effective, reducing mycelia growth of the rot pathogens by 54.6-77.3% in vitro and 47.2-68.8% reduction of rot incidence in vivo. The efficacy of Trichoderma species used in this study recommends their use as alternative therapy to synthetic fungicides in the management of post-harvest rot in sweetpotato. J Bangladesh Agril Univ 17(4): 446–453, 2019


Plant Disease ◽  
2018 ◽  
Vol 102 (6) ◽  
pp. 1176-1176 ◽  
Author(s):  
N. C. Paul ◽  
S.-S. Nam ◽  
J.-W. Yang ◽  
A. Kachroo

Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2723-2723
Author(s):  
M. N. Stahr ◽  
S. Butler ◽  
A. I. Huerta ◽  
D. F. Ritchie ◽  
L. M. Quesada-Ocampo

Sign in / Sign up

Export Citation Format

Share Document