scholarly journals First Report of Beet Curly Top Virus Infecting Industrial Hemp (Cannabis sativa) in Arizona

Plant Disease ◽  
2020 ◽  
Author(s):  
Jiahuai Hu ◽  
Robert Masson ◽  
Laura Dickey

Industrial hemp (Cannabis sativa) is an emerging crop in Arizona, with many uses, including fiber, cosmetic products, and health food. In 2020, severe curly top disease outbreaks were observed in several hemp fields in Yuma and Graham Counties, Arizona, where disease incidence and severity were considerably high, up to 100% crop loss occurring in some fields. A wide range of symptoms have been observed at different infection stages and plant growth stages at the time of infection. Early stage symptoms manifest as light green-to-yellowing of new growth, similar to sulfur or micronutrient deficiency, usually combined with older leaves with dark green “blotchy” mosaic mottling overlaying light green chlorosis. Mosaic mottling of older leaves continues into mid-growth stage, and is coupled with more severe yellowing and witch’s broom (stunted leaves and shortened internode length of stem) of apical meristematic tissue. Curling and twisting of new leaves has also been observed. Symptoms often appear to be isolated to individual branches, with other branches showing no visual symptoms, often outgrowing and covering affected branches until harvest. Late stage symptoms include severe leaf curling with or without twisting, continued stunting, and necrosis of yellow leaves, resulting in significant yield reduction. Severely affected plants dwarfed by the virus experienced high mortality rates later into the season, most likely attributed to reduced ability to overcome abiotic stress conditions. These symptoms indicated the likelihood of curly top caused by Beet curly top virus (BCTV), which has been recently reported in Colorado (Giladi et al., 2020). Shoots were collected from thirty-eight symptomatic and nine asymptomatic hemp plants from July to August, 2020. Leaves were also collected as positive control from four chili pepper plants with or without curly top symptoms in Cochise County. Genomic DNA was extracted using DNeasy Plant Pro Kit (Qiagen Inc., Valencia, CA) according to the manufacturer’s instructions. BCTV-specific primers BCTV1 and BCTV2 were used to detect BCTV following a method by Rondon (Rondon et al., 2016). A 500 bp DNA fragment, indicative of BCTV, was amplified from all symptomatic hemp and chili pepper samples, but not from asymptomatic samples. Sequence analysis of this 500 bp DNA fragment revealed 98.99 % identity with GenBank accession MK803280, which is Beet curly top virus isolate from hemp identified in Western Colorado (Giladi et al., 2020). The full-length genomes of BCTV isolates from hemp and chili peppers were generated with additional primers 328F/945R (620bp), 455F/ 945R (490bp), OutR/ 2213F (1,190bp), 2609R/ 1278R (1,340bp), BCTV2/ 2609R (1,890bp) (Rondon et al., 2016, Strausbaugh et al., 2008). The complete nucleotide sequence (MW182244) from hemp was 2,929 bp and had 99.35% sequence identity with GenBank accession KX867055, which was a Worland strain of Beet curly top virus isolated from an Idaho sugar beet plant (Strausbaugh et al., 2017). Our hemp BCTV genome sequences shared 96.08% identity with the hemp strain of BCTV from Colorado (MK803280) and 99.50% identity with the BCTV isolate (MW188519) from chili pepper identified in this study. BCTV was reported on outdoor hemp in Western Colorado, in 2020 (Giladi et al., 2020). This is the first report of BCTV in Arizona causing curly top of industrial hemp in the field. In Arizona, BCTV is widespread on many agronomic crops including chili peppers and spread primarily by the phloem-feeding beet leafhoppers: Circulifer tenellus (Hemiptera: Cicadellidae) (Bennett, 1967). Due to the wide distribution of beet leafhoppers and abundant range of host plants for the virus, BCTV may become one of the most yield-limiting factors affecting the emerging industrial hemp production systems in Arizona.

Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 999-999 ◽  
Author(s):  
Y. Giladi ◽  
L. Hadad ◽  
N. Luria ◽  
W. Cranshaw ◽  
O. Lachman ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahuai Hu

In Arizona, industrial hemp (Cannabis sativa) is a newly cultivated crop for fiber, oil, cosmetic products, and health food. During July to September 2020, two fields of industrial hemp crops were identified in southern Arizona with 10 to 30% incidence of plants showing witches’ broom. Disease incidence was assessed by counting symptomatic plants in 4 randomly selected rows of 25 plants in each field. Symptoms ranged from leaf mottling and yellowing on mildly affected plants to leaf curling and shortened internode length of stem on severely affected plants (Fig. 1). Shoots were randomly collected from eight symptomatic plants and three asymptomatic plants in the same area. Genomic DNA was extracted from 200 mg of each sample using DNeasy Plant Pro Kit (Qiagen Inc., Valencia, CA) according to the manufacturer’s instructions. Phytoplasma was tested by a real-time PCR assay and TaqMan probe targeting the 23S ribosomal RNA gene that detects a wide range of known Phytoplasmas (Hodgetts et al., 2009). Beet curly top virus (BCTV) was targeted using BCTV-specific primers BCTV1 and BCTV2 following a method by Rondon (Rondon et al., 2016). BCTV was not detected in the plants, but Phytoplasmas were detected in all eight symptomatic plants, but not in the three control plants. The positive DNA samples were used to identify the phytoplasma by nested PCR using universal phytoplasma-specific primer pairs P1/P6 (Deng, S. et al. 1991) and R16F2n/R16R2 (Gundersen et al., 1996) targeting the 16S rRNA gene and the resulting 1.25 kb fragment in 4 positive samples was subjected to Sanger sequencing (Eton Bioscience, San Diego). All 4 sequences were identical and deposited in GenBank under accession MW981356. BLASTn results indicated 100% identity with that of several ‘Candidatus Phytoplasma trifolii’ strains on potato (KR072666, KF178706) in Washington and chile peppers (HQ436488) in New Mexico. It also shared 99.84% identity with the sequence of the reference strain of Candidatus Phytoplasma trifolii’ (AY390261) that caused clover proliferation. The phytoplasma AZH1 was classified as a member of subgroup A within group16SrVI using iPhyClassifier, an interactive online tool for phytoplasma classification and taxonomic assignment (Zhao et al., 2013). Phylogenetic analysis revealed that the phytoplasma AZH1 clustered with other isolates of 'Candidatus Phytoplasma trifolii' (Fig. 2), including the strain NV1 associated with witches’ broom on C. sativa in Nevada (Feng et al. 2019). This is the first report of ‘Candidatus Phytoplasma trifolii’ related strain associated with yellowing and witches’ broom on hemp in Arizona. This finding is significant as the observation of symptoms at 30% incidence in one field suggested that the identified pathogen may pose a significant threat to the production of industrial hemp production in Arizona.


Plant Disease ◽  
2021 ◽  
Author(s):  
Kelley Rose Paugh ◽  
Johanna Del Castillo Múnera ◽  
Cassandra L Swett

Industrial hemp (Cannabis sativa) is a newly legal crop in California that is grown for cannabidiol oil, fiber and seed. In August 2019, whole plant decline and root rot were observed affecting <5% of plants in two industrial fields in Fresno County, CA. Symptoms included chlorotic, collapsed foliage, stem vascular discoloration, and root rot with abundant mycelial growth. Stem and root segments (1-2 cm) from three to five diseased plants were agitated in 0.1% tween-20 and soaked in 70% ethanol for 30 s and 1% NaOCl for 2 min. After incubating for 5 to 7 days on 1:10 potato dextrose agar (PDA) amended with tetracycline, Fusarium selective medium (FSM), and PARP (pimaricin + ampicillin + rifampicin + pentachloronitrobenzene [PCNB] agar) medium, white to pale cream aerial mycelium emerged from tissue of all plants on PDA and FSM but not PARP. Isolates cultured on 0.1% potassium chloride agar formed heads of microconidia on long monophialides consistent with the Fusarium solani species complex (FSSC) (Leslie and Summerell 2008). To obtain pure cultures of two isolates (CS529 and CS530), a single-hyphal tip was excised and grown on PDA. DNA was extracted from actively growing mycelium (PrepMan Ultra kit). The translation elongation factor gene (EF-1α) was amplified via PCR using EF1/EF2 primers (O’Donnell et al. 1998). Sequences of the two isolates were identical and deposited under accession number MW892973 in GenBank. The 599 bp sequence was 99.33% identical to FSSC 3 + 4 (Fusarium falciforme) accessions FD_01443_EF-1a based on FUSARIUM-ID BLAST analysis. To evaluate pathogenicity, stems of hemp plants (cv. ‘Berry Blossom’; n=8 plants per isolate) were wounded by penetrating the epidermis in an area about 0.5-cm square by 1-mm deep and 8-inches above the soil line. A 0.5 cm-diameter plug of 7-day old F. falciforme-colonized PDA was placed against the wound. Inoculation sites were loosely wrapped with parafilm for 2 days. A negative control consisted of a sterile PDA plug (n=3). Treatments were arranged in a completely randomized design in a greenhouse. The experiment was conducted once, due to regulatory restrictions at campus facilities. At 61 days post-inoculation, external stem lesions were significantly larger in diameter (P < 0.05; Tukey’s HSD) in plants inoculated with CS529 (8 ± 1 mm) compared to the control (2 ± 0 mm), and larger but not significant for CS530 (6 ± 1 mm). Internal stem lesions (i.e., rot in stele) were observed in plants inoculated with CS529 (9 ± 3 mm); stem rot was very minor in plants treated with CS530 (1 ± 1 mm) and nonexistent for control plants. No other disease symptoms were observed. F. falciforme was isolated from stems of CS529- and C530-inoculated plants. Sequences of re-isolates matched 100% with accession MW892973. These results suggest that F. falciforme causes rot in hemp in California. These studies specifically confirm stem rot abilities; field observations of root rot indicate root rotting abilities, but further tests are needed for confirmation. This is the first report of F. falciforme causing disease in industrial hemp. FSSC was described as causing foot rot in hemp in Italy (Sorrentino et al. 2019), but these isolates belonged to phylogenetic species 5 (F. solani) not F. falciforme. In addition, F. falciforme was reported as causing root rot in hydroponically grown cannabis (Punja and Rodriguez 2018). These studies provide the foundation for development of management tools for hemp disease.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1773-1773 ◽  
Author(s):  
D. Szarka ◽  
L. Tymon ◽  
B. Amsden ◽  
E. Dixon ◽  
J. Judy ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Lili Tang ◽  
Xixia Song ◽  
Liguo Zhang ◽  
Jing Wang ◽  
Shuquan Zhang

Industrial hemp is an economically important plant with traditional uses for textiles, paper, building materials, food and medicine (Li 1974; Russo et al. 2008; Zlas et al. 1993). In August 2020, an estimated 80% of the industrial hemp plants with leaf spots were observed in greenhouse in Minzhu town, Harbin City, Heilongjiang Province, China (45.8554°N, 126.8167°E), resulting in yield losses of 20%. Leaf symptoms began as small spots on the upper surface of leaves and gradually developed into brown spots with light yellow halos. These irregular spots expanded gradually and eventually covered the entire leaf; the center of the spots was easily perforated. To identify the pathogen, 20 diseased leaves were collected, and small sections of (3 to 5 mm) were taken from the margins of lesions of infected leaves. The pieces were sterilized with 75% alcohol for 30 s, a 0.1% mercuric chloride solution for 1 min, and then rinsed three times with sterile water. Samples were then cultured on potato dextrose agar at 28℃ in darkness for 4 days. A single-spore culture was obtained by monosporic isolation. Conidiophores were simple or branched, straight or flexuous, brown, and measured 22 to 61 μm long × 4 to 5 μm wide (n = 50). Conidia were solitary or in chains, brown or dark brown, obclavate, obpyriform or ellipsoid. Conidia ranged from 23 to 55 μm long × 10 to 15 μm wide (n = 50) with one to eight transverse and several longitudinal septa. For molecular identification (Jayawardena et al. 2019), genomic DNA of pathogenic isolate (MZ1287) was extracted by a cetyltrimethylammonium bromide protocol. Four gene regions including the rDNA internal transcribed spacer (ITS), glyceraldehyde-3-phosplate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1) and RNA polymerase II beta subunit (RPB2) were amplified with primers ITS1/ITS4, GDF1/GDR1, EF1-728F/EF1-986R and RPB2-5F/RPB2-7cR, respectively (White et al. 1990). Resulting sequences were deposited in GenBank with accession numbers of MW272539.1, MW303956.1, MW415414.1 and MW415413.1, respectively. A BLASTn analysis showed 100% homology with A. alternata (GenBank accession nos. MN615420.1, MH926018.1, MN615423.1 and KP124770.1), respectively. A neighbor-joining phylogenetic tree was constructed by combining all sequenced loci in MEGA7. The isolate MZ1287 clustered in the A. alternata clade with 100% bootstrap support. Thus, based on morphological (Simmons 2007) and molecular characteristics, the pathogen was identified as A. alternata. To test pathogenicity, leaves of ten healthy, 2-month-old potted industrial hemp plants were sprayed using a conidial suspension (1×106 spores/ml). Control plants were sprayed with sterile water. All plants were incubated in a greenhouse at 25℃ for a 16 h light and 8 h dark period at 90% relative humidity. The experiment was repeated three times. After two weeks, leaf spots of industrial hemp developed on the inoculated leaves while the control plants remained asymptomatic. The A. alternata pathogen was re-isolated from the diseased leaves on inoculated plants, fulfilling Koch's postulates. Based on morphology, sequencing, and pathogenicity test, the pathogen was identified as A. alternata. To our knowledge, this is the first report of A. alternata causing leaf spot disease of industrial hemp (Cannabis sativa L.) in China and is worthy of our attention for the harm it may cause to industrial hemp production.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
R. Sausserde ◽  
A. Adamovics

Interest for possibilities of the industrial hemp (Cannabis sativa L.) growing in Latvia is increasing year by year and they are considered as one of the most promising renewable biomass sources to replace nonrenewable natural resources for manufacturing of wide range industrial products. The aim of this research was to evaluate of biomass potential of some industrial hemp varieties to be recommended to grow in Latvia and clarify carbon content. The biometric parameters of ten industrial hemp cultivars – ‘Bialobrzeskie’, ‘Futura 75’, ‘Fedora 17’, ‘Santhica 27’, ‘Beniko’, ‘Ferimon’, ‘Epsilon 68’, ‘Tygra’, ‘Wojko’ and ‘Uso 31’ have been investigated at the Research and Study farm “Peterlauki” of the Latvia University of Agriculture in 2011-2012. The carbon content was determined. The results of investigation show that industrial hemp is promising plant for biomass production in Latvia. Depending on the variety the green over-ground biomass varies from 36 - 54 t ha-1 in 2011 and from 48 - 75 t ha-1 in 2012. The highest green over-ground biomass was obtained cultivar ‘Futura 75’ up to 75 t ha-1. The carbon content in hemp stems was found from 41.62 – 45.38 % and it depend on cultivars. Results of investigation of biomass potential of all ten industrial hemp cultivars are presented.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jia Chen ◽  
Zhimin Li ◽  
Cheng Yi ◽  
Chunsheng Gao ◽  
Litao Guo ◽  
...  

In July 2020, symptoms of crown and root rot were observed on about 10% of 4-month-old plants of industrial hemp Cannabis sativa cultivar Yunma-1 in Weifang City, Shandong Province in eastern China (Fig 1). During this month, the local temperature ranged from 19-32°C, and the total precipitation was 148mm. The disease symptoms included leaf chlorosis, crown and root rot, stunted growth, and wilting (Figs. 1 and 2). The diseased stem and root tissues were collected and cut into fragments of 0.5cm each. The fragments were surface-sterilized by dipping into 1% NaClO for 1 min, rinsed in sterile water and plated on potato dextrose agar (PDA) and on oomycetes-selective medium PARP (Jeffers and Martin 1986). The plates were incubated at 25°C in the dark for 3 days and 18 total single-hyphal purified isolates were obtained for further analyses with 8 from PDA and 10 from PARP. The colonies of all 18 isolates were white, had abundant aerial hyphae, and were cottony in appearance, resembling Pythium spp (Watanabe 2002). The grass-leaf method (Van Der Plaats-Niterink 1981) induced their sexual reproduction. The size and shape of hyphae, oogonia, antheridia, and oospores were all consistent with those of Pythium aphanidermatum (Fig 3). DNA was extracted from three isolates and their internal transcribed spacer (ITS) regions of rDNA were amplified and sequenced using the primers ITS1/ITS4 (White et al. 1990). The ITS sequences of all three isolates were identical to each other (GenBank accession OK091124.1) and showed a 100% query coverage and 99.88% nucleotide sequence identity with that of type strain of P. aphanidermatum (GenBank accession AY598622.2). Pathogenicity tests were performed with three isolates on hemp cultivar B1. Sterile substrates were prepared in 2L-pots containing peat soil and vermiculite in a 2:1 ratio, with test hemp plants grown from rooted stem cuttings. Plants were kept in a greenhouse at 22 to 27°C under 16 h photoperiod, watered every two days (about 200ml each time) and supplied commercial nutrient solution once a week. A month after transplanting to pots, a wound of 1 mm deep and 10 mm long (made by a sterilized needle) on the surface of the root crown area of the main stem was inoculated with an 8-mm-diameter agar disk of mycelia grown on PDA for 4 days. Six plants were tested for each isolate and three plants were inoculated with sterile agar medium without mycelia as negative controls. The experiment was repeated twice. After one month, plants inoculated with P. aphanidermatum isolates showed the same disease symptoms as observed on field plants while all negative control plants remained disease-free. P. aphanidermatum was reisolated from the diseased tissue and confirmed to be identical to those inoculated based on ITS sequencing and colony morphology. To our knowledge, this is the first report of P. aphanidermatum causing crown and root rot on hemp in China. With an estimated 66,700 hectares hemp cultivation in China producing over US$1 billion worth of hemp fiber (McGrath 2020), this pathogen represents a serious threat to the hemp industry. This pathogen has been reported on hemp in the US and Canada (Beckerman et al. 2017; Punja et al. 2018). The origin of P. aphanidermatum on hemp in China and its relationship to those in North America remain to be examined.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1784-1784 ◽  
Author(s):  
V. P. Doyle ◽  
H. T. Tonry ◽  
B. Amsden ◽  
J. Beale ◽  
E. Dixon ◽  
...  

2019 ◽  
Vol 11 (9) ◽  
pp. 2691 ◽  
Author(s):  
Beatrice Dingha ◽  
Leah Sandler ◽  
Arnab Bhowmik ◽  
Clement Akotsen-Mensah ◽  
Louis Jackai ◽  
...  

Industrial hemp (Cannabis sativa), has been proposed as a new crop that might be of interest to organic farmers in the North Carolina and other states in the United States. However, little is known about how organic farmers view this crop. We conducted a survey among North Carolina certified organic growers to ascertain their knowledge of, and willingness to adopt, industrial hemp. Contact information was obtained from a database of certified organic farmers in North Carolina and the growers were contacted by email and directed to complete an online questionnaire. Growers were asked a wide range of questions about farm characteristics, technology adoption, interest toward industrial hemp, and policy issues regarding hemp adoption. A total of 245 farmers were contacted; 64 started the survey and 35 responded to all questions. Our results indicate that 85% of North Carolina organic growers are interested in growing hemp on their farms and the majority wanted to learn more about the crop production practices, adapted cultivars, and legality of growing it. Seventy-five percent expressed interest in being certified growers while 52% wanted to grow industrial hemp primarily for cannabidiol (CBD) oil. Most (65%) respondents indicate they aspired to be among the first farmers in their area to grow and sell hemp. Growers who have tried new crops or new farming technology in the last three years were more likely to adopt industrial hemp production. These findings will help decision-makers understand the critical concerns of growers who are willing to adopt industrial hemp as an alternative income-generating enterprise.


Sign in / Sign up

Export Citation Format

Share Document